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The on-axis far-field pressure response of a circular membrane in an infinite baffle when driven by
a uniformly distributed electrostatic force is calculated using two different trial functions for the
surface velocity distribution. The first is an expansion based upon a solution to the free space wave
equation in oblate spheroidal coordinates, which has already been derived in a previous paper �J.
Acoust. Soc. Am. 120�5�, 2460–2477 �2006��, and the second is a membrane eigenfunction
expansion �or Bessel series�, which is rigorously derived in this letter. Although the latter can be
used as a basis for calculating a number of different radiation characteristics such as the radiation
impedance or directivity, etc., only the on-axis far-field sound pressure is considered here. The
results are compared and discussed. © 2008 Acoustical Society of America.
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I. INTRODUCTION

In a previous paper,1 the sound field of a circular mem-
brane in an infinite baffle was calculated using a trial func-
tion for the surface velocity distribution based upon a solu-
tion to the free space wave equation in oblate spheroidal
coordinates. No convergence problems were encountered be-
cause the chosen trial function has an inherent zero at the rim
which matches the clamped rim boundary condition of the
membrane. In a more recent paper,2 the sound field of a
shallow spherical shell was calculated, which differed from
the membrane in that the surface velocity was non-zero at the
rim. Initially, the authors tried using the spheroidal trial func-
tion, but encountered convergence problems because a very
large number of terms were needed in the expansion in order
to maintain the true non-zero velocity close to the rim where
it is forced to zero by the trial function. Hence, an eigenfunc-
tion expansion based upon the solution to the wave equation
of the shell itself was used instead. In this letter, this eigen-
function expansion method is retrospectively applied to the
membrane and compared with the original spheroidal trial
function. The authors originally obtained this result in order
to verify the eigenfunction method before applying it to the
shell. However, there are some differences in the derivations
for the membrane and shell due to differences in their bound-
ary conditions, as will be pointed out.

In Sec. II, both trial functions are presented in the form
of summations with unknown coefficients. In Secs. III and
IV, solutions to the free space and membrane wave equations
respectively are given. In Sec. V, the solutions are then
coupled and solved simultaneously in Sec. VI for the un-
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known trial function coefficients. Finally, in Sec. VII, expres-
sions for the far-field sound pressure response are derived.

Electrostatic loudspeakers often have damping in the
form of narrow sound holes in the electrodes which provide
viscous losses in order to flatten what would otherwise be a
highly modal response. The pressure response is calculated
here without damping in order to obtain a response with
strong modal features. This makes it easier to see whether
the two calculation methods actually give the same results.
Also, the lack of damping demonstrates more clearly the
effect of coupling to the acoustic radiation load: Due to the
radiation mass being considerably greater than the membrane
mass, the modes are shifted downwards at low frequencies
and the radiation resistance has a damping effect at high
frequencies.

II. TRIAL FUNCTION

In the case of the membrane,1 the following spheroidal
trial function was used for the velocity distribution:

ũ0�w0� = �
m=0

�

Ãm�1 −
w0

2

a2 �m+�1/2�

, �1�

where Ãm are the expansion coefficients �which have to be
calculated�, w0 is the radial ordinate, and a is the radius of
the membrane, as shown in Fig. 1. In the case of the shell,2

an eigenfunction expansion was used instead, in order to
guarantee convergence. A similar eigenfunction expansion
can also be used as a trial function for a membrane as fol-

lows:
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ũ0�w0� = �
m=1

�

ÃmJ0��mw0/a� , �2�

where �m is the mth zero of J0��m�. However, this differs
from the eigenfunction expansion for a shell in that a shell
has bending stiffness which gives rise to a I0��mw0 /a� term
where I0 is the Bessel function of the second kind. The shell
also has a piston term which is proportional to the dome
height. The uniform driving force is not expected to excite
any axial modes, so only the 0th order Bessel function is
included. Both of these trial functions satisfy the boundary
condition of zero velocity at the rim of the membrane. The
first is a solution to the wave equation for the surrounding
medium to which the membrane is coupled and the second is
a solution to the homogeneous wave equation for membrane
itself. Only the latter is applied in this letter. In some ways,
this method is slightly more direct because a set of simulta-
neous equations for the expansion coefficients is generated
by simply equating the coefficients of J0��nw /a� in the
coupled equation. In the previous spheroidal derivation,1 Eq.
�1� was expanded as a Bessel series at one stage in order to
generate the simultaneous equations. Both of these methods
are fairly direct, though, and avoid the need for collocation
or least squares minimization, which in turn leads to smaller
errors and greater detail at high frequencies. Errors come
mainly from the truncation of the expansion limits, as will be
discussed.

III. SOLUTION TO THE FREE SPACE WAVE
EQUATION

Using the King integral and doubling the amplitude due
to the presence of the baffle, the pressure distribution is de-
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FIG. 1. Geometry of the membrane.
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p̃�w,z� = 2�
0

2� �
0

a

g�w,z	w0,z0�

�
�

�z0
	p̃�w0,z0�	z0=0+w0dw0d�0, �3�

where the Green’s function is defined, in axisymmetric cy-
lindrical coordinates, by

g�w,z	w0,z0� =
i

4�
�

0

�

J0��w�J0��w0�
�

�
e−i�	z−z0	d� �4�

and �=
k2−�2, where k is the wave number given by k
=� /c=2� /	 and

�

�z
	p̃�w,z�	z=0
 = − ik�cũ0�w�, 0 � w � a , �5�

where � is the density of air or any surrounding acoustic
medium and c is the speed of sound in that medium. Insert-
ing Eqs. �4� and �5� in Eq. �3� and integrating over the sur-
face of the membrane while setting z0=0 yields the sound
pressure field as follows:

p̃�w,z� = ka�c�
m=1

�

Ãm�mJ1��m�

��
0

� J0�a��J0��w�e−i�z

��m
2 − a2�2��

a�d� , �6�

where the following identity3 has been used:

�
0

a

J0��w0�J0��mw0/a�w0dw0

=
a2

�m
2 − a2�2 ��mJ0�a��J1��m� − a�J0��m�J1�a��� �7�

and taking into account that J0��m�=0. Let the power series

coefficients Ãm be related to normalized dimensionless coef-
ficients 
m by

Ãm = 
mp̃I/�2�c� , �8�

where p̃I is the uniformly distributed driving pressure. Set-
ting z=0 in Eq. �6� provides the surface pressure as follows:

p̃+�w0� = ka2 p̃I

2 �
m=1

�


m�mJ1��m��
0

� J0�a��J0��w0�
��m

2 − a2�2��
�d� . �9�

IV. SOLUTION TO THE MEMBRANE WAVE
EQUATION

The solution1 to the membrane wave equation T��2

−kD
2 ��̃�w�= p̃+�w�− p̃−�w�− p̃I, subject to the boundary condi-

tions �̃�a�=0 and p̃+�w�=−p̃−�w�, is given by

�̃�w� =
1

T
�

0

2� �
0

a

�2p̃+�w0� − p̃I�G�w	w0�w0dw0d�0, �10�

where �2=�2 / ��w2�+w−1� / ��w� , �̃�w� is the membrane de-
flection, T is the tension and kD is the wave number of the



membrane defined by kD=� �Dh /T, where �D is the density
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of the membrane and h is its thickness. The Green’s
function4 for the membrane can be written suppressing the
axial term in � and �0 as follows:

G�w	w0� =
1

�
�
n=1

�
J0��nw/a�J0��nw0/a�

J1
2��n���n

2 − kD
2 a2�

, 0 � w � a . �11�

V. FORMULATION OF THE COUPLED PROBLEM

Substituting Eqs. �9� and �11� in Eq. �10� and equating
the deflection with that given in Eq. �2� �where �̃�w�
=−iũ0�w� /kc� leads to the following coupled equation �after
integrating over the surface�:

1

�nJ1��n�
= − i
n

�n
2 − kD�

2a2

4ka2�c2 T

+ ka�
m=1

�


m�
0

� �m�nJ0
2�a��a�

��m
2 − a2�2���n

2 − a2�2��
d� , �12�

which is obtained by equating the coefficients of J0��nw /a�
and again using the identity of Eq. �7� together with5

�0
aJ0��nw0 /a�w0dw0=a2J1��n� /�n.

VI. CALCULATION OF THE POWER SERIES
COEFFICIENTS

A. Final set of simultaneous equations

From Eq. �12�, the following set of M simultaneous
equations in 
m can be written

�
m=1

M

m�n�kD� a,ka�
m = 1, n = 1,2, . . . ,M , �13�

where m�n is an element of the mth column an nth row of
the M �M matrix given by

m�n�kD� a,ka� = �nJ1��m��−
ika��n

2 − kD�
2a2�

2�2�ka�
�mn

+ �m�nI�k,m,n�� , �14�

where �mn is the Kronecker delta function and the infinite
series limit has been truncated to order M. The dimensionless
parameter � is the fluid-loading factor given by ��ka�
=kac
2a� /T. The integral I�k ,m ,n� is defined by I�k ,m ,n�
= IF�k ,m ,n�+ iII�k ,m ,n�, where

IF�k,m,n� = ka�
0

k J0
2�a��a�

��m
2 − a2�2���n

2 − a2�2�
k2 − �2
d� , �15�

II�k,m,n� = − ka�
k

� J0
2�a��a�

��m
2 − a2�2���n

2 − a2�2�
�2 − k2
d� . �16�

It can be seen that the numerators and denominators of these
integrals are simultaneously zero when �m=a� or �n=a�,
so these are indeterminate points. Using Taylor’s series, it
can be shown that the functions are actually continuous.
Hence, the integrals can be solved numerically so long as

these indeterminate points are avoided. Also, the weak sin-
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gularity at �=k can be removed by means of suitable substi-
tutions, as shown in the following sections. However, the
integrands are strongly oscillatory and the integral II has an
infinite limit. Therefore, it is more efficient to solve these
integrals analytically to yield fast converging expansions.

B. Solution of the finite integral

After substituting �=k
1− t2, Eq. �15� for the finite in-
tegral becomes

IF�k,m,n� = �
0

1 k2a2J0
2�ka
1 − t2�

��m
2 − k2a2�1 − t2����n

2 − k2a2�1 − t2��
dt . �17�

The Bessel functions can then be expanded using the follow-
ing Lommel expansion:6

J0�ka
1 − t2� = �
p=0

�
Jp�ka�

p!
� ka

2
�p

t2p, �18�

so that the expanded integral can be written

IF�k,m,n� = k2a2�
p=0

�

�
q=0

�
Jp�ka�Jq�ka�

p ! q!
� ka

2
�p+q

��
0

1 t2p+2q

��m
2 − k2a2�1 − t2����n

2 − k2a2�1 − t2��
dt . �19�

After solving the integral,3 and truncating the infinite expan-
sion limits to P and Q, the final expression can be written

	IF�k,m,n�	m�n = k2a2�
p=0

P

�
q=0

Q
Jp�ka�Jq�ka�

p ! q ! �2p + 2q + 1���m
2 − �n

2�

�� ka

2
�p+q� 1

k2a2 − �m
2 2F1�1,u − 1;u;

k2a2

k2a2 − �m
2 �

−
1

k2a2 − �n
2 2F1�1,u − 1;u;

k2a2

k2a2 − �n
2�
 , �20�

where u= p+q+3 /2 and which is valid for m�n. It can be
seen that if m=n, then �m

2 −�n
2=0, which leads to a singular

expression. In the case of the shell, this problem did not arise
due to the presence of damping resistance in the boundary
conditions, which gave rise to complex eigenvalues so that
the difference between the squares of two complex conjugate
eigenvalues was non-zero. Here, for m=n the following al-
ternative expression has to be used:

	IF�k,m�	m=n = k2a2�
p=0

P

�
q=0

Q
Jp�ka�Jq�ka�

p ! q ! �2p + 2q + 1��k2a2 − �m
2 �2

�� ka

2
�p+q

2F1�2,u − 1;u;
k2a2

k2a2 − �m
2 � . �21�

C. Solution of the infinite integral

After substituting �=k
t2+1, Eq. �16� for the finite in-

tegral becomes
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II�k,m,n� = − �
0

� k2a2J0
2�ka
t2 + 1�

��m
2 − k2a2�t2 + 1����n

2 − k2a2�t2 + 1��
dt .

�22�

The Bessel functions can then be expanded using Gegenbau-
er’s summation theorem5 as follows:

J0�ka
t2 + 1� = 2�
p=0

�
�− 1�p

1 + �p0
J2p�ka�J2p�kat� , �23�

so that the expanded integral can be written

II�k,m,n� = − 4k2a2�
p=0

�

�
q=0

�
�− 1�p+qJ2p�ka�J2q�ka�

�1 + �p0��1 + �q0�

��
0

� J2p�kat�J2q�kat�
��m

2 − k2a2�t2 + 1����n
2 − k2a2�t2 + 1��

dt . �24�

After solving the integral,3 and truncating the infinite expan-
sion limits to P and Q, the final expression can be written

	II�k,m,n�	m�n

= −
ka

�
�
p=0

P

�
q=0

Q
J2p�ka�J2q�ka�

�1 + �p0��1 + �q0��v − 2�2�u − 2�2��m
2 − �n

2�

��3F4�1,1,
3

2
;3 − u,u,3 − v,v;k2a2 − �m

2 �
− 3F4�1,1,

3

2
;3 − u,u,3 − v,v;k2a2 − �n

2�
 , �25�

where u= p+q+3 /2, v= p−q+3 /2 and which is valid for
m�n. Again, in order to avoid singularities, for m=n the
following alternative expression is provided:

	II�k,m�	m=n =
3ka

2�
�
p=0

P

�
q=0

Q
J2p�ka�J2q�ka�

�1 + �p0��1 + �q0��u − 3�4�v − 3�4

�3F4�2,2,
5

2
;4 − u,u + 1,4 − v,v + 1;k2a2 − �m

2 � . �26�

It should be noted that in the case of the shell,2 the solution
to the infinite integral also contained Bessel functions of the
second kind, in addition to the hypergeometric functions, due
to the eigenvalues being complex. Here they are real, so
those Bessel functions would not be valid and have been
removed in order to obtain the correct result.

VII. FAR FIELD PRESSURE RESPONSE

The far field pressure is derived by inserting the follow-
ing far-field Green’s function in spherical-cylindrical coordi-
nates

g�r,�,�	w0,�0,z0� =
1

4�r
e−ik�r−w0 sin � cos��−�0�−z0 cos �� �27�

in Eq. �3� and integrating over the surface of the membrane

to obtain
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p̃�r,�� = −
ia

4r
p̃Ie

−ikrD��� , �28�

where r is the distance from the origin to the observation
point and � is the angle subtended to the axis of symmetry.
The directivity function D��� is given by

D��� = 2ka�
m=1

M
�mJ1��m�J0�ka sin ��

�m
2 − �ka sin ��2 
m. �29�

For �=0 �i.e., on axis�, this simplifies to

D�0� = 2ka�
m=1

M
J1��m�

�m

m. �30�

The on-axis pressure response without damping is shown in
Fig. 3 where the sound pressure level �SPL� is given by:
SPL=20 log10 	 p̃�r ,0� / �20�10−6�	. Figure 2 shows the re-
sponse calculated using the surface-velocity trial function
given in Eq. �1� and the far-field expression given in the
previous paper.1 The summation limit M is shown for each of
the 114 points plotted. The summation limit was determined
using a convergence criterion of 0.002 dB maximum differ-
ence between the SPL computed with M and �M +1� terms.
The remaining summation limits P and Q were set to P=Q
=2M.

VIII. DISCUSSION OF THE RESULTS

The on-axis pressure responses shown in Figs. 2 and 3
are fairly typical of clamped membranes and plates in gen-
eral. At the eigenfrequencies the membrane’s displacement
becomes very large. When most of the membrane’s surface is
moving in the same direction, large peaks are produced.
Also, there are frequencies at which the displacement is still
large, but different regions of the membrane are moving in
opposite directions so as to cancel each other out: Instead of
radiating sound, air is just moved back and forth between the
areas of the surface that are moving in opposite phase. An
excellent illustration of this has been provided by Streng.7

The damping effect of the increasingly resistive radiation
impedance at high frequencies is fairly evident. The direct
nature of calculation method shows considerable detail in
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using the spheroidal trial function of Eq. �1�, where a=125 mm, h
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this region, enabled by the elimination of collocation or least
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squares methods. The actual differences between the pres-
sures in Figs. 2 and 3 are fairly small. On axis, the maximum
difference is 0.03 dB, rising to 0.1 dB at 45° off axis. As
expected, the off axis response rolls off early due to high-
frequency beaming, but still shows significant modal varia-
tions.

Also shown in these figures are the numbers of terms in
the summations required to meet the convergence criterion of
less than 0.002 dB difference in SPL when one extra term is
added to the summation. Not surprisingly, it can be seen that
generally more terms are required at higher frequencies due
to the increasing complexity in the displaced membrane
shape. Also, more terms are required at the eigenfrequencies
because the driving force and acoustic pressure are distrib-
uted in such a way that excites not just that particular eigen-
frequency, but a complex mixture of higher order modes too.
Interestingly, fewer terms are required in the case of the
eigenfunction method in between the eigenfrequencies, so
here it must provide a more natural fit to the displaced shape.
However, at the eigenfrequencies, the summation limit tends
to be slightly greater than with the spheroidal method.

Regarding the speed of the calculations, this would of
course vary considerably depending on whether a compiled
or non-compiled program is used, numerical algorithms, type
of hardware and other factors too. Suffice to say that the
spheroidal method was found to be about ten times faster.
This is mainly due to the fact that the hyperbolic functions in
Eqs. �21� and �26� are functions of both p and q in the double
summations, whereas in the case of the spheroidal method1
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FIG. 3. On-axis and 45° off-axis pressure responses and summation limit M
using the eigenfunction-expansion trial function of Eq. �2� with same pa-
rameters as Fig. 2.
the hypergeometric function is a function of q only.
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IX. CONCLUSIONS

An alternative method has been presented for calculating
the radiation characteristics of a membrane using a trial func-
tion based upon an eigenfunction expansion. This method,
like the previous one which used a spheroidal trial function,
does not require numerical integration.

Since the two methods give SPL values within 0.03 dB
of each other on axis, it is not possible to state that one is
necessarily more accurate than the other, but the fact that the
two results are so consistent means that neither is likely to be
wildly inaccurate.

The simpler formulas provided by the spheroidal series
make it easier to derive expressions for other radiation char-
acteristics such as the near field pressure and radiation im-
pedance. Unfortunately, it appears to be restricted to cases
where the surface velocity/deflection is either zero1 or
infinity8 at the rim, such as circular membranes,1 sound
holes,8 and clamped or simply supported plates and shells.
Otherwise, for a finite rim velocity, the eigenfunction expan-
sion has to be used. Examples of the latter are circular plates
or shells2 with non-zero rim velocity as in dynamic loud-
speakers, earpieces and microphones, where the contribution
of the surround is ignored �but its stiffness can still be
included in the boundary conditions2�. The rim velocity
boundary condition affects the modal structure which, in
turn, affects the computed sound pressure. Although the
eigenfunction method is slower and therefore less attractive
for the current problem, it has been verified and can therefore
be applied with confidence to other uses where the spheroi-
dal method is unsuitable.
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