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Equations describing the radiation characteristics of a rigid disk in a finite open baffle are derived
using a method similar to that used by Streng for a circular membrane based upon the dipole part
of the Kirchhoff–Helmholtz boundary integral formula. In this case, however, a power series
solution to the radiation integral is derived in order to eliminate the need for numerical integration.
Hence, a set of simultaneous equations is obtained by simply equating the coefficients of the
power series, which leads to two mathematical functions, one real and one imaginary, that can
be applied to any radial velocity distribution. This provides an alternative method to obtain the
sound scattered by a disk or the complementary hole in an infinite resilient screen according to
Babinet’s principle. Using the principle of superposition �or Gutin concept�, it is shown how the
sound radiation characteristics of a disk radiating from just one side can be obtained by combining
the radiation field of a disk in a finite baffle with that of a disk in an infinite baffle. This one-sided
radiator may be interpreted as a disk in a thin, circular enclosure. © 2005 Acoustical Society of
America. �DOI: 10.1121/1.2000828�

PACS number�s�: 43.20.Rz, 43.20.Tb, 43.20.Fn, 43.20.Wd �LLT� Pages: 1311–1325
I. INTRODUCTION

The radiation characteristics of elementary sources are
invaluable in providing lumped parameters for acoustics
models based upon equivalent electrical circuits. Further-
more, they serve an important educational purpose in illus-
trating fundamental radiation and diffraction theory. They
may also be used to provide benchmarks for boundary or
finite element modeling �BEM/FEM�. This can provide us
with much information about the required element size and
what kind of meshing geometry to use.

In addition to describing the radiation characteristics of
a disk in an open or closed circular baffle, a more general
aim of this paper is to present a simple unified approach to
the problem of flat, axially symmetric sound sources based
upon the Green’s function in cylindrical coordinates and the
Kirchhoff–Helmholtz boundary integral formula.1 The latter
is a general equation that describes the spatial distribution of
the pressure within and on the surface bounding an acoustic
medium. However, in the case of surfaces radiating into free
space, the volume integral term can be omitted and the
Green’s function for an unbounded medium g�r �r0� is used
so that the pressure distribution is described by

p̃�r� =� � g�r�r0�
�

�n0
p̃�r0� − p̃�r0�

�

�n0
g�r�r0�dS0, �1�

where the first term �or monopole part� is the integral of the
inward-pointed normal gradient of the boundary values of
p�r0� and g�r �r0� over the surface, and the second term �or
dipole part� is the integral of the boundary values of p�r0�
and the inward-pointed normal gradient of g�r �r0� over the

surface.
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Many of the classical analytical results reproduced dur-
ing the course of this paper are best known through the
works of Beranek2 and Olson.3 Fifty years ago, it must have
been a formidable task calculating these results without the
benefits of modern computing power. Even today, the task of
reproducing the results of the original papers,4,5 from which
they were derived, is perhaps not so trivial unless the reader
is well versed in the mathematical methods used. Hence, it is
useful to derive a compact set of equations suitable for mod-
ern computer applications. Bouwkamp6 and Spence7 inde-
pendently derived the first rigorous solutions to the problem
of the freely suspended disk using iterative methods based
upon oblate spheroidal wave functions, while Meixner and
Fritze8 calculated its near-field pressure response. Nimura
and Watanabe9 calculated the radiation impedance and direc-
tivity of a rigid disk in a finite circular open baffle for lower
values of ka. Pachner10 described a calculation method using
spherical Bessel and Legendre functions and used the super-
position of fields, although no results were presented.
Crane11 calculated the radiation impedance of a circular pis-
ton in a closed circular baffle directly by applying the bound-
ary conditions of a sound field resulting from the superposi-
tion of a disk in a finite open baffle upon a disk in an infinite
baffle. In theory, it should be possible to extract the open
baffle impedance from these results simply by doubling them
and then subtracting the infinite baffle impedance. However,
given the approximate nature of this calculation method and
the fact that the real open baffle impedance is so small at low
frequencies, the result is inevitably wildly inaccurate. In the
last few decades, there has been much interest in time-

domain techniques.
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Previously, one of the present authors12 has used the
least mean square �LMS� algorithm to tackle this problem,
but found it to be numerically unsatisfactory for larger baffle
sizes. Instead, the velocity of the radiator and its baffle is
described, in this paper, by a step function using a Bessel
function series, which produces a membrane-like expression.
This allows a set of simultaneous equations to be obtained by
simply equating the coefficients of the power series.

II. RIGID DISK IN A FINITE OPEN-BACK CIRCULAR
BAFFLE

A. Boundary conditions

The disk shown in Fig. 1 lies in the xy plane, with its
center at the origin and oscillates in the z direction with
velocity ũ0, thus radiating sound from both sides. The radius
of the disk is a and it is assumed to be infinitesimally thin. It
is surrounded by an infinitesimally thin circular baffle, the
inner and outer radii of which are a and b, respectively. If
b=a, the problem reduces to that of a rigid disk in free space.
The area of each surface element is given by

�S0 = w0�w0��0. �2�

The pressure field on one side of the xy plane is the sym-
metrical “negative” of that on the other, so that

p�w,z� = − p�w,− z� . �3�

Consequently, there is a Dirichlet boundary condition in the
plane of the disk where these equal and opposite fields meet.

p�w,0� = 0, b � w � � �4�

On the front and rear surfaces of the baffle, there is a Neu-
mann boundary condition

�

�z
�p̃�w,z��z=0± = 0, a � w � b . �5�

Also, on the front and rear surfaces of the disk, there is the

FIG. 1. Rigid disk in a finite open-back circular baffle.
coupling condition
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�

�z
�p̃�w,z��z=0± = − ik�cũ0�w�, 0 � w � a �6�

where � is the density of air or any other surrounding me-
dium, and c is the speed of sound in that medium. The an-
notation ˜ denotes a harmonically time-varying quantity
where we have suppressed the term ei�t. In order to tackle
this problem, we shall use the second term or dipole surface
integral part of Eq. �1�. However, some prior expression for
the frontal surface pressure distribution p̃+�w0� is needed.
Also, because the disk can radiate from both sides, the rear
surface pressure distribution p̃−�w0� must be included too,
where p̃+�w0�=−p̃−�w0�. Streng13,14 showed that the surface
pressure distribution for any flat, axially symmetric un-
baffled source �or sink�, based upon Bouwkamp’s solution6

to the free-space wave equation in oblate spheroidal coordi-
nates, could be written as

p̃+�w0� = − p̃−�w0� = �
m=0

�

Ãm�1 −
w0

2

b2 	m+�1/2�

. �7�

where Ãm are the as yet unknown power series coefficients.

B. Solution of the free-space wave equation

The pressure distribution, in accordance with the
Huygens–Fresnel principle, is given by the second term or
dipole part of Eq. �1� written in cylindrical coordinates as
follows:

p̃�w,z� = − �
0

2� �
0

b

�p̃+�w0� − p̃−�w0��

	
�

�z0
�g�w,z�w0,z0��z0=0+w0 dw0 d�0, �8�

where the Green’s function g�w �w0� is the solution to the
following free-space wave equation in the presence of a
monopole point source located at �w0 ,z0� on the surface of
the disk:

��2 + k2�g�w,z�w0,z0� = − ��w − w0,z − z0� , �9�

where

�2 =
�2

�w2 +
1

w

�

�w
+

�2

�z2 , �10�

k =
2�



=

�

c
. �11�

However, the pressure produced at each point �w ,z� in space
by each dipole element is defined in the integral of Eq. �8� by
the product of the surface pressure, the inward-pointed nor-
mal gradient of the Green’s function, and the area of each
element given by Eq. �2�. A solution to Eq. �9� is the free-
space Green’s function in cylindrical coordinates,1 also
known as the Lamb or Sommerfeld integral, which is given

by
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g�w,z�w0,z0� =
i

4�
�

0

�

J0��w�J0��w0�
�

�
e−i��z−z0�d� ,

�12�

where

� = 
k2 − �2. �13�

Due to axial symmetry, only the zeroth term of the original
power series is shown in Eq. �12�. The normal gradient of the
Green’s function at the surface is given by

�

�z0
�g�w,z�w0,z0��z0=0+

=
1

4�
�

0

�

J0��w�J0��w0��e−i�zd� . �14�

Inserting this together with Eq. �7� in Eq. �8� and integrating
over the surface of the disk and its baffle yields

p̃�w,z� = − b�
m=0

�

Ãm2m+�1/2�
�m +
3

2
	�

0

� � 1

�b
	m+�1/2�

	 Jm+�3/2���b�J0��w�e−i�zd� , �15�

where the following identity15 has been used:

�
0

a

w0�1 −
w0

2

b2 	m+�1/2�

J0��w0�dw0

= b2�
0

1

t�1 − t2�m+�1/2�J0��bt�dt

= b22m+�1/2�
�m +
3

2
	� 1

�b
	m+�3/2�

Jm+�3/2���b� , �16�

where t=w0 /b. Applying the boundary conditions of Eq. �5�
and Eq. �6� leads to

�

�z
�p̃�w,z��z=0±

= ib�
m=0

�

Ãm2m+�1/2�
�m +
3

2
	�

0

� � 1

�b
	m+�1/2�

	Jm+�3/2���b�J0��w��d� = − ik�cũ0��w� , �17�

where

��w� = �1, 0 � w � a ,

0, a � w � b .
� �18�

C. Series representation of the velocity
distribution

Let the Bessel series have the form

��w� = �
n=1

�

anJ0�j0nw/b� , �19�

where j0n is the nth zero of J0 such that J0�j0n�=0. Multi-
plication of Eq. �19� by the normalizing function

J0�j0mw /b� and integration over w gives
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�
0

b

��w�J0�j0mw/b�w dw

= �
0

a

J0�j0mw/b�w dw

= �
n=1

�

an�
0

b

J0�j0nw/b�J0�j0mw/b�w dw . �20�

Integrating over w yields

ab

j0m
J1�j0ma/b� =

b2

2 �
n=1

�

an�mnJ1
2�j0n� , �21�

where the following identities15 have been employed:

�
0

a

J0�j0mw/b�w dw = �
0

1

J0�j0may/b�y dy

= abJ1�j0ma/b�/j0m, �22�

and

�
0

1

J0��x�J0��x�x dx = � 0, � � � ,

J1
2���/2, � = � ,

� �23�

where y=w /a, x=w /b and �, � are zeros of J0. Hence

an = 2
aJ1�j0na/b�
bj0nJ1

2�j0n�
. �24�

A series expansion15 of J0�j0nw /b� is given by

J0�j0nw/b� = �
q=0

�
�− 1�q

�q!�2 � j0n

2
	2q�w

b
	2q

. �25�

Substituting Eq. �24� and Eq. �25� in Eq. �19� yields

��w� =
a

b
�
n=1

N

�
q=0

Q
�− 1�qJ1�j0na/b�

�q!�2J1
2�j0n�

� j0n

2
	2q−1�w

b
	2q

, �26�

where both infinite power series limits have been truncated.
The result is plotted in Fig. 2 for a= 1

2 , b=1, N=10, and Q

FIG. 2. Bessel series representation of the surface velocity distribution.
=50.
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D. Formulation of the coupled problem

Equation �17� can be written more simply as

�
m=0

�

�mIm�w,k� = − ��w� , �27�

which needs to be solved for the normalized power series
coefficients �m, where

�m =
Ãm

�m + 3/2�kb�cũ0

, �28�

and

Im�w,k� = ImR�w,k� + iImI�w,k� , �29�

where the real part of the integral in Eq. �29� is given by

ImR�w,k� = b2
�m +
5

2
	�

0

k � 2

�b
	m+�1/2�

	 
k2 − �2Jm+�3/2���b�J0��w�d� , �30�

and the imaginary part is given by

ImI�w,k� = b2
�m +
5

2
	�

k

� � 2

�b
	m+�1/2�

	 
�2 − k2Jm+�3/2���b�J0��w�d� . �31�

E. Solution of the real integral

Substitution of �=k sin � in Eq. �30� gives

ImR�w,k� = 4
�m +
5

2
	� 2

kb
	m−�3/2��

0

�/2 cos2 �

�sin ��m+1/2

	 J0�kw sin ��Jm+�3/2��kb sin ��d� . �32�

A series expansion15 of Jm+3/2�kb sin �� is given by

Jm+�3/2��kb sin ��

= �
q=0

Q � kb

2
	2q+m+�3/2� �− 1�q�sin ��2q+m+3/2

q!
�q + m + 5/2�
. �33�

Replacing j0n /b in Eq. �25� with k sin �, and substituting
this together with Eq. �33� in Eq. �32� gives

ImR�w,k� = 4�
q=0

Q

�
r=0

R
�− 1�q+r
�m + 5/2�

�q!�2r!
�r + m + 5/2��w

b
	2q

	 � kb

2
	2�q+r�+3�

0

�/2

cos2 ��sin ��2�q+r�+1d� .

�34�

Solution of the integral in Eq. �34� is enabled by use of the
following identity:16

�
0

�/2

cos2 ��sin ��2�q+r�+1d� =

�
�q + r + 1�
4
�q + r + 5/2�

. �35�
Evaluating the integral over � yields
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ImR�w,k� = �
q=0

Q

�
r=0

R 
��− 1�q+r
�m + 5/2�
�q + r + 1�
�q!�2r!
�r + m + 5/2�
�q + r + 5/2�

	 � kb

2
	2�q+r�+3�w

b
	2q

. �36�

F. Solution of the imaginary integral

In order to change the infinite limit of Eq. �31� to a finite
one, Streng13 replaced the Bessel function Jq+3/2 with Hankel
functions Hq+3/2

�1� +Hq+3/2
�2� . By applying contour integration

theory, together with the substitution �=kei�, he showed that
the imaginary integral Eq. �31� could be expressed as

ImI�w,k� = R�4i� 2

kb
	m−�3/2�


�m +
5

2
	

	 �
0

�/2

ei��1/2�−m��
e2i� − 1J0�kwei��

	 
Jm+�3/2��kbei�� + iYm+�3/2��kbei���d�	 .

�37�

A series expansion15 of the Neumann function is given by

Ym+�3/2��kbei�� = �
q=0

Q � kb

2
	2q−m−�3/2� �− 1�q+mei��2q−m−3/2�

q!
�q − m − 1/2�
.

�38�

Replacing j0n /b in Eq. �25� and k sin � in Eq. �33� with
kei�, and substituting these together with Eq. �38� in Eq.
�37� gives

ImI�w,k� = − 4�
q=0

Q

�
r=0

R

R� �− 1�q+r
�m + 5/2�
�q!�2r!
�r + m + 5/2�

�w

b
	2q

	 � kb

2
	2�q+r�+3

i�
0

�/2

e2i� − 1e2i��q+r+1�d�

−
�− 1�q+r+m
�m + 5/2�
�q!�2r!
�r − m − 1/2�

�w

b
	2q� kb

2
	2�q+r−m�

	�
0

�/2

e2i� − 1e2i��q+r−m−�1/2��d�	 . �39�

Solution of the integrals in Eq. �37� is enabled by use of the
following identity:16

�
0

�/2

e2i� − 1e2i��d� =

1

2�
�2F1�−

1

2
,�;� + 1;− 1	ei��

−

�
�� + 1�
2
�� + 3/2�

	 . �40�
Evaluating the integrals over � yields
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ImI�w,k� = 4
�m +
5

2
	R��

q=0

Q

�
r=0

R

FY�q,r,m�� kb

2
	2�q+r−m�

	 �w

b
	2q

− iFJ�q,r,m�� kb

2
	2�q+r�+3�w

b
	2q	 ,

�41�

where the subfunctions FY and FJ are given by

FY�q,r,m� = �− 1�q+r+m� 2F1�− 1/2,�;� + 1;− 1�ei��

2��q!�2r!
�r − m − 1/2�

−

�
���

4�q!�2r!
�r − m − 1/2�
�� + 3/2�
	 , �42�

FJ�q,r,m� = �− 1�q+r� 2F1�− 1/2,�;� + 1;− 1�ei��

2��q!�2r!
�r + m + 5/2�

−

�
���

4�q!�2r!
�r + m + 5/2�
�� + 3/2�
	 , �43�

where

� = q + r − m − 1/2, �44�

� = q + r + 1. �45�

However, for integer values of q and r, iFJ �q ,r ,m� is purely
imaginary and therefore makes no contribution to the real
part of ImI�w ,k�. Similarly, the ei��q+r−m−1/2� term of FY

�q ,r ,m� is also purely imaginary and can therefore be ex-
cluded. Thus, the final result can be written

ImI�w,k�

= − �
q=0

Q

�
r=0

R 
��− 1�q+r+m
�m + 5/2�
�q + r − m − 1/2�
(q!2r!
�r − m − 1/2�
�q + r − m + 1�

	� kb

2
	2�q+r−m��w

b
	2q

. �46�

G. Calculation of the power series coefficients „final
set of simultaneous equations…

Truncating the infinite power series in Eq. �27� to order
M and equating the coefficients of �w /b�2q yields the final set
of M simultaneous equations in �m as follows:

�
m=0

M

�mBq�kb� − imSq�kb���m = − �q, �47�

where B shall be named the Bouwkamp function as defined
by

mBq�kb� = 
��
r=0

M
�− 1�q+r
�m + 5/2�
�q + r + 1�

r!�q!�2
�r + m + 5/2�
�q + r + 5/2�

	 � kb

2
	2�q+r�+3

, �48�
and S shall be named the Streng function as defined by

J. Acoust. Soc. Am., Vol. 118, No. 3, Pt. 1, September 2005
mSq�kb� = 
��
r=0

M
�− 1�q+r+m
�m + 5/2�
�q + r − m − 1/2�
r!�q!�2
�r − m − 1/2�
�q + r − m + 1�

	� kb

2
	2�q+r−m�

, �49�

and

�q =
a

b
�
n=1

N
�− 1�qJ1�j0na/b�

�q!�2J1
2�j0n�

� j0n

2
	2q−1

, �50�

which is solved for q=0,1 ,2 , . . . ,M −1, M. In the case of
b=a, the problem reduces to that of a rigid disk in free
space, in which case

�q = �q0, �51�

where �q0 is the Kronecker delta function. In the case of b
=8a, calculations were performed with M =200, N=40, and
140 digits of precision. These values were reduced in pro-
portion to b /a for smaller baffle sizes.

H. Surface pressure

From Eq. �28�, it follows that

Ãm = �m�m + 3/2�kb�cũ0. �52�

After substituting this in Eq. �7�, the surface pressure can be
written as

p̃+�w0� = kb�cũ0�
m=0

M �m +
3

2
	�m�1 −

w0
2

b2 	m+�1/2�

. �53�

I. Radiation impedance

The total force F̃ acting upon the disk can be found by
integrating the pressure from Eq. �53� over its surface on
both sides as follows:

F̃ = − �
0

2� �
0

a

2p̃+�w0�w0 dw0 d�0

= − 2�kb3�cũ0�
m=0

M

�m�1 − �1 −
a2

b2	m+�3/2�� . �54�

The acoustic radiation impedance zar is then given by

zar =
F̃

SŨ0

=
F̃

S2ũ0

=
2�c

S
�RR + iXR� , �55�

where Ũ0 is the total volume velocity produced by the disk
and S is the area of the disk given by S=�a2. RR is the
normalized radiation resistance given by

RR = − kb
b2

a2 �
m=0

M

R��m��1 − �1 −
a2

b2	m+�3/2�� , �56�
and XR is the normalized radiation reactance given by
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XR = − kb
b2

a2 �
m=0

M

I��m��1 − �1 −
a2

b2	m+�3/2�� . �57�

This result is plotted in Fig. 3. By using standard curve-
fitting methods, the following asymptotic expressions can be
written:

RR � 0.068�b2

a2 − 0.56	k4a4, kb � 0.5, �58�

XR �
8�3b − 2a�
3��3b − a�

ka, kb � 0.5. �59�

J. Near-field pressure response

Applying expression for Ãm in Eq. �52� to Eq. �15�, the
normalized near-field pressure can be written

p̃�w,z�
�cũ0

= − kb2�
m=0

�

�m
�m +
5

2
	

	 �
0

� � 2

�b
	m+�1/2�

Jm+�3/2���b�J0��w�e−i�zd� .

�60�

By substituting �=kt, Eq. �60� can be written

p̃�w,z�
�cũ0

= − 4�
m=0

M

�m
�m +
5

2
	� 2

kb
	m−�3/2�

	 ��
0

1 1

tm+�1/2�e
−ikz
1−t2Jm+�3/2��kbt�J0�kwt�dt

+ �
1

� 1

tm+�1/2�e
−kz
t2−1Jm+�3/2��kbt�J0�kwt�dt	 .

�61�

The infinite integral in Eq. �61� converges so rapidly that the
infinite limit can be replaced with a finite value of say, 50,
without significant loss of accuracy. The result is shown in

FIG. 3. Normalized radiation impedance of a disk in a finite open-back
baffle.
Fig. 4 for b=2a with various values of ka.
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K. Far-field pressure response

In the case of the far-field response, it is more conve-
nient to use spherical coordinates so that the far-field polar
responses can be obtained directly. Rayleigh’s far-field
approximation1 is ideal for this purpose

g�r,�,��w0,�0,z0� =
1

4�r
e−ik�r−w0 sin � cos��−�0�−z0 cos ��.

FIG. 4. Near-field pressure response of a disk in a finite open-back baffle
with b=2a.
�62�
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back baffle with b=2a.

baffle with constant acceleration.
Again, the second term or dipole part of Eq. �1� is used, but
this time in spherical coordinates

p̃�r,�,�� = − �
0

2� �
0

b

�p̃+�w0� − p̃−�w0��

	
�

�z0
�g�r,�,��w0,�0,z0��z0=0+w0 dw0 d�0.

�63�

However, it is necessary to find the surface normal gradient
of the far-field Green’s function given in Eq. �62�

�

�z0
�g�r,�,��w0,�0,z0��z0=0+ = ik cos �

1

4�r
e−ikr

	 eikw0 sin � cos��−�0�. �64�

As the disk is axially symmetric, any reference angle � may
be chosen in Eq. �64�. Therefore, the problem can be simpli-
fied by letting �=� /2 so that cos��−�0�=sin �0. Inserting
Eq. �64� and Eq. �53� into Eq. �63� and integrating over
the surface of the disk yields

p̃�r,�� = − ik�cSũ0
1

2�r
e−ikrD��� , �65�

where S is the area of the disk, given by S=�a2, and the
following identities15 have been used:

1

2�
�

0

2�

eit sin �0d�0 = J0�t� , �66�

where t=kw0 sin � together with Eq. �16�, where �
=k sin �. The directivity function D��� is given by

D��� = − kb
b2

a2 cos ��
m=0

M

�m
�m +
5

2
	� 2

kb sin �
	m+�3/2�

	 Jm+�3/2��kb sin �� . �67�

The on-axis pressure is evaluated using �=0 in Eq. �64� be-
fore inserting it into Eq. �63�. This results in an integral that
is similar to the one for the radiation impedance in equation
Eq. �54�. Hence

D�0� = − kb
b2

a2 �
m=0

M

�m. �68�

It is worth noting that in the unbaffled case, where b=a, the
on-axis response is simply defined by D�0�=RR+ iXR. Again,
using standard curve-fitting methods, the following
asymptotic expression can be written:

D�0� � i0.66�b

a
− 0.3	ka, kb � 0.5. �69�

The normalized on-axis response is shown in Fig. 5, where
the normalized SPL is given by

SPLNorm = 20 log10�D�0�� . �70�

The normalized directivity function 20 log10��D���� / �D�0���
is plotted in Fig. 6 with b=2a for various values of ka and

in Fig. 7 with ka=� /2 for various values of b /a.

J. Acoust. Soc. Am., Vol. 118, No. 3, Pt. 1, September 2005
FIG. 6. Normalized far-field directivity function of a disk in a finite open-
FIG. 7. Normalized far-field directivity function of a disk in a finite open-
FIG. 5. Normalized far-field on-axis response of a disk in a finite open-back
back baffle with ka=� /2.
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III. RIGID DISK IN AN INFINITE BAFFLE

A. Boundary conditions

The original derivation of the radiation impedance by
Lord Rayleigh17 over 100 years ago used an ingenious coor-
dinate system to simplify the problem. Stenzel18 derived the
near-field pressure response using the simple omnidirectional
Green’s function. Since equations describing the radiation
characteristics of a disk in an infinite baffle are needed for
Sec. IV, it is perhaps worth providing a brief review of
King’s method,19 which is consistent with Sec. II as it uses
the Green’s function in cylindrical coordinates.

The disk shown in Fig. 1 is now mounted in an infinite
baffle in the xy plane and oscillates in the z direction with a
harmonically time-dependent velocity ũ0. The area of each
surface element is given by Eq. �2�. However, the dipole
elements are replaced with monopole elements as shown in
Fig. 8. The monopole source elements and their images to-
gether form the disk source. Since they are coincident in the
plane of the baffle, they combine to form elements of double
strength. Hence, the disk in an infinite baffle can be modeled
as a “breathing” disk in free space. It may also be considered
as a pulsating sphere of the same radius compressed into the
plane of the disk. Due to the symmetry of the pressure fields
on either side of the baffle, there is the following Neumann
boundary condition on its surface:

�

�z
�p̃�w,z��z=0+ = 0, a � w � � , �71�

and on the surface of the disk there is the coupling condition

�

�z
�p̃�w,z��z=0+ = − ik�cũ0, 0 � w � a , �72�

where � is the density of air or any other surrounding me-

FIG. 8. Rigid disk in an infinite baffle.
dium and c is the speed of sound in that medium.

1318 J. Acoust. Soc. Am., Vol. 118, No. 3, Pt. 1, September 2005
B. Near-field pressure

The pressure distribution, in accordance with the
Huygens–Fresnel principle, is given by the first term or
monopole part of Eq. �1� taking into account the double-layer
source

p̃�w,z� = 2�
0

2� �
0

a

g�w,z�w0,z0�

	
�

�z0
�p̃�w0,z0��z0=0+w0 dw0 d�0. �73�

Inserting the Green’s function of Eq. �12�, together with Eq.
�72�, into Eq. �73�, while integrating over the surface of the
disk yields

p̃�w,z�
�cũ0

= − ka�
0

�

J1��a�J0��w�
1

�
e−i�zd� , �74�

where we have used Eq. �22� with y=w0 /a and �= j0m /b. By
substituting �=kt, Eq. �74� can be written

p̃�w,z�
�cũ0

= − ka��
0

1 1

1 − t2

e−ikz
1−t2J1�kat�J0�kwt�dt

+ i�
1

� 1

t2 − 1

e−kz
t2−1J1�kat�J0�kwt�dt	 . �75�

The infinite integral in Eq. �75� converges so rapidly that the
infinite limit can be replaced with a finite value of, say, 50
without significant loss of accuracy. This result is shown in
Fig. 9 for various values of ka.

C. Radiation impedance

The total force F̃ acting upon the disk can be found by
integrating the pressure from Eq. �74� over its surface as
follows:

F̃ = − �
0

2� �
0

a

p̃��w,z��z=0+w dw d� = 2�ka2�cũ0

	 ��
0

k J1
2��a�

�
k2 − �2
d� − i�

k

� J1
2��a�

�
�2 − k2
d�	 , �76�

where Eq. �22� has again been used. Using King’s
solutions19 to the integrals over � in Eq. �76� leads to the
following expression for the acoustic radiation impedance:

zar =
F̃

SŨ0

=
F̃

S2ũ0

= �RR − iXR�
�c

S
, �77�

where Ũ0 is the total volume velocity produced by the disk
and S is its surface area given by S=�a2. RR is the normal-

ized radiation resistance given by
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RR = 1 −
J1�2ka�

ka
, �78�

and XR is the normalized radiation reactance given by

XR =
H1�2ka�

ka
, �79�

where J1 is the first-order Bessel function and H1 is the first-
order Struve function. This result is plotted in Fig. 10. The
following well-known asymptotic expressions can also be

FIG. 9. Near-field pressure response of a disk in an infinite baffle.
written:
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RR � k2a2/2, ka � 0.5, �80�

XR � 8ka/�3��, ka � 0.5. �81�

D. Far-field response

Again, the first term or monopole part of the K-H bound-
ary integral formula �1� is used, but this time in spherical
coordinates

p̃�r,�,�� = 2�
0

2� �
0

a

g��r,�,��w0,�0,z0��z0=0+

	
�

�z0
�p̃�w0,�0,z0��z0=0+w0 dw0 d�0. �82�

Equation �62� and Eq. �72� can now be inserted into Eq. �82�,
again letting n=0 and �=� /2 so that cos��−�0�=sin �0.
Integrating over the surface of the disk while using Eq.
�66� and Eq. �22� with j0m /b=k sin � yields

p̃�r,�� = − ik�cSũ0
1

2�r
e−ikrD��� , �83�

where S is the area of the disk given by S=�a2. The direc-
tivity function D��� is given by

D��� =
2J1�ka sin ��

ka sin �
. �84�

The normalized directivity function 20 log10�D���� is plotted
in Fig. 11 for various values of ka. The on-axis pressure is
evaluated using �=0 in Eq. �62� before inserting it into
Eq. �82�, which leads to

D�0� = 1. �85�

The final result is most commonly written

p̃�r,0� = − i��Ũ0
1

2�r
e−ikr, �86�

˜ ˜

FIG. 10. Normalized radiation impedance of a disk in an infinite baffle.
where the volume velocity is given by U0=Su0.
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IV. RIGID DISK IN A FINITE, CLOSED-BACK
CIRCULAR BAFFLE

A. Boundary conditions

The disk shown in Fig. 1, together with its circular
baffle, lies in the xy plane and oscillates in the z direction
with velocity ũ0. The radius of the disk a and the inner and
outer radii of the baffle are a and b, respectively. However,
the configuration is now modified so that sound from the rear
of the disk is blocked by a small cylindrical enclosure of
radius b and depth h. The model is valid providing h�a /4,
although the radiation impedance is virtually the same as that
of a rigid disk at the end of a flanged infinite tube �or an
unflanged tube5 in the case of b=a�. The area of each surface
element is given by Eq. �2�.

B. Near-field pressure

It is shown in Fig. 12 that the pressure distribution of the
closed-back radiator is the sum of the outputs of the same
radiator with an open back and in an infinite baffle. In other

FIG. 11. Normalized far-field directivity function of a disk in an infinite
baffle.
words, it uses the full K-H boundary integral of Eq. �1� in-
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cluding both the dipole and monopole parts. Hence, the near-
field pressure distribution can be obtained by summing Eq.
�61� and Eq. �75�. However, in order to normalize the re-
sponse, the resulting pressure is halved. The result is shown
in Fig. 13 with b=2a for various values of ka.

C. Radiation impedance

The same argument can be applied to the radiation im-
pedance too, which is simply proportional to the sum of the
surface pressures. The real part of the normalized radiation
impedance can thus be obtained by combining Eq. �56� and
Eq. �78� as follows:

RR =
1

2
�1 −

J1�2ka�
ka

− kb
b2

a2 �
m=0

M

R��m��1 − �1 −
a2

b2	m+�3/2��	 . �87�

Similarly, the imaginary part can be obtained by combining
Eq. �57� and Eq. �79�

XR =
1

2
�H1�2ka�

ka

− kb
b2

a2 �
m=0

M

I��m��1 − �1 −
a2

b2	m+�3/2��	 . �88�

This result is plotted in Fig. 14. The asymptotic expressions
can be written

RR � k2a2/4, ka � 0.5, �89�

XR �
4

�
�2b − a

3b − a
	ka, ka � 0.5. �90�

D. Far-field response

The far-field response takes on the same form as that in
both a finite open baffle given by Eq. �65� and an infinite

FIG. 12. Rigid disk in a finite closed-back circular baffle.
baffle given by Eq. �83�
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p̃�r,�� = − ik�cSũ0
1

2�r
e−ikrD��� , �91�

where S is the area of the disk given by S=�a2. The direc-

FIG. 13. Near-field pressure response of a disk in a finite closed-back baffle
with b=2a.
tivity function D��� is obtained by combining the directivity
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function in a finite open baffle given by Eq. �67� with that in
an infinite baffle given by Eq. �84�

D��� =
J1�ka sin ��

ka sin �
− kb

b2

a2 cos ��
m=0

M

�m
�m +
5

2
	

	 � 2

kb sin �
	m+3/2

Jm+�3/2��kb sin �� . �92�

Similarly, the on-axis response may be obtained by combin-
ing the on-axis response in a finite open baffle given by Eq.
�68� with that in an infinite baffle given by Eq. �85�, where
the latter is just unity

D�0� =
1

2
�1 − kb

b2

a2 �
m=0

M

�m	 . �93�

The normalized on-axis response is shown in Fig. 15 again
using Eq. �70�. The normalized directivity function
20 log10��D���� / �D�0��� is plotted in Fig. 16 with b=2a for
various values of ka and in Fig. 17 with ka=� /2 for vari-
ous values of b /a.

V. BABINET’S PRINCIPLE

Babinet’s principle,20 as developed by Bouwkamp6 and
Wiener,4 states that the diffraction pattern resulting from the
transmission of a plane wave through a hole in an infinite
resilient screen �i.e., with zero surface impedance� is equiva-
lent to that produced by the scattering of the same incident

FIG. 14. Normalized radiation impedance of a disk in a finite closed-back
baffle.

FIG. 15. Normalized far-field on-axis response of a disk in a finite closed-

back baffle with constant acceleration.
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wave by the complementary rigid disk. Furthermore, the
scattered wave is identical to that produced if the disk itself
were oscillating in free space, providing the velocity of the
disk is equal and opposite to the particle velocity of the
incident wave at the surface of the disk or hole in the absence
of any obstacle. This is illustrated in Fig. 18. For clarity, the
diagram portrays the scattering of a sound wave at some very
high frequency where there is minimal diffraction. However,
the principle applies at all frequencies. The resulting sound
field is given by

p̃�r� = p̃Inc�r� + p̃Scat�r� , �94�

where p̃Inc�r� is the incident sound field in the absence of a
hole or disk given by

FIG. 16. Normalized directivity far-field function of a disk in a finite closed-
back baffle with b=2a.

FIG. 17. Normalized directivity far-field function of a disk in a finite closed-

back baffle with ka=� /2.
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p̃Inc�z� = �− ik�c�̃�eikz − e−ikz� , bright side of screen

0, dark side of screen

− ik�c�̃eikz, without disk�or screen�
�
�95�

and using Eq. �75� for p̃Scat�w ,z� or Eqs. �83� and �84� for

p̃Scat�r ,��. Also, it can be stated that the force F̃inc exerted
upon the disk by an incident wave is given by

F̃inc = zarSũp, �96�

where ũp is the undisturbed incident wave particle velocity at
the surface of the disk and S is its surface area. The radiation
impedance zar is given by Eqs. �55�–�57�.

VI. APPROXIMATION FOR THE RIGID DISK IN FREE
SPACE „RADIATION FROM AN UNBAFFLED
RESILIENT DISK…

The following section contains a review of a historical
approach to the problem of the disk in free space.1 Prior to
the work of Bouwkamp,6 the Kirchhoff theory of diffraction
had been used, which makes an assumption of equally dis-
tributed surface pressure in order to simplify the problem. In
the case of diffraction, the pressure across the complemen-
tary hole in an infinite resilient screen is assumed to be the
same as that of the incident wave, as if it were completely
unaffected by the hole. In the case of radiation from a disk, if
the pressure is constant, the velocity has to be allowed to
vary across its radius so that it is no longer rigid. In fact, this
produces a hypothetical sound source in which an equal driv-
ing force is applied directly to each air particle over the
surface represented by the resilient “disk.” Unlike a mem-
brane, however, there is no boundary condition of zero dis-
placement at the perimeter. Hence, this model creates some
problems since it requires constant pressure to be maintained
right up to the outer edge, where there is effectively an
acoustic “short circuit” between the front and rear surfaces.
Therefore, the reactive particle velocity at the perimeter is
infinite, as is also the imaginary admittance.

The disk shown in Fig. 1 lies in the xy plane and a

uniform driving force F̃ is applied in the z direction. The area

FIG. 18. Babinet’s principle.
of a surface element is given by Eq. �2� and the boundary
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conditions of Eq. �3�, Eq. �4�, and Eq. �6� are assumed with
b=a. Let the surface pressure distribution on the front and
rear faces be defined by

p̃+�w0� = − p̃−�w0� = −
F̃

2S
, �97�

where the total surface area S on each face is given by S
=�a2. Inserting Eq. �97� together with Eq. �14� in Eq. �8�
and integrating over the surface area of the disk yields

p̃�w,z� =
aF̃

2SD
�

0

�

J1��a�J0��w�e−i�zd� , �98�

where Eq. �22� has been used. The disk velocity ũ0�w� can be
derived from the boundary condition of Eq. �6� as follows:

ũ0�w� =
i

k�c

�

�z
�p̃�w,z��z=0+

=
aF̃

2k�cSD
�

0

�

J1��a�J0��w�� d� . �99�

Integrating the velocity over the area of the disk provides the

total volume velocity Ũ0 as follows:

Ũ0 = �
0

2� �
0

a

ũ0�w�w dw d� =
�a2F̃

k�cSD
�

0

�

J1
2��a�

�

�
d� ,

�100�

where Eq. �22� has been used again. The acoustic radiation
impedance zar can now be written as

zar =
F̃

SDŨ0

=
2�c

SDYR
, �101�

where YR is the normalized acoustic radiation admittance,
which is expressed here as the sum of its real and imaginary
parts

YR = GR + iBR, �102�

where GR is the normalized conductance given by

GR =
2

k
�

0

k 
k2 − �2

�
J1

2��a�d� , �103�

and BR is the normalized susceptance given by

BR =
2

k
�

k

� 
�2 − k2

�
J1

2��a�d� . �104�

The solution16 to Eq. �103� is

GR = 1 +
1

ka
J1�2ka� − 2J0�2ka� − ��J1�2ka�H0�2ka�

− J0�2ka�H1�2ka�� �
k2a2

6
, ka � 0.5. �105�

Unfortunately, the integral in Eq. �104� does not converge
and therefore cannot be solved due to the acoustic short cir-
cuit at the perimeter mentioned above. However, using the

admittance of a disk in an infinite baffle from Sec. III and

J. Acoust. Soc. Am., Vol. 118, No. 3, Pt. 1, September 2005
doubling it yields a reasonably good approximation to the
actual solution for a rigid disk as follows:

BR =
2kaH1�2ka�

�ka − J1�2ka��2 + �H1�2ka��2 �
3�

4ka
, ka � 0.5.

�106�

The real and imaginary admittances GR and BR are plotted in
Fig. 19 along with the actual admittances derived from Sec.
II for comparison. Also, the impedance may be written as

RR =
GR

GR
2 + BR

2 �
8k4a4

27�2 , ka � 0.5, �107�

XR =
BR

GR
2 + BR

2 �
4ka

3�
, ka � 0.5. �108�

Again, using Eq. �64� together with Eq. �97� and inserting
them into Eq. �63� leads to the following directivity function:

D��� =
2J1�ka sin ��

ka sin �
cos � . �109�

VII. CONCLUSIONS

Referring to Fig. 5, it can be seen that in the case of an
unbaffled rigid disk radiating from both sides, the on-axis
sound output falls at 6 dB/octave for small values of ka due
to the decreasing path difference �as a proportion of wave-
length 
� between the antiphase rear radiation and the front
radiation, which it partially cancels.

At larger values of ka, the rear radiation from the disk
moves in and out of phase with that from the front. However,
the comb filter effect is fairly “smeared,” the largest peak
being 3 dB at ka=� / 
2 or 
=2
2a. The reason for this is
that rear radiation comprises many point sources spread all
across the radius of the disk, each with a different path length
to the front, so that at no particular frequency do they pro-
duce a combined source that is either directly in phase or out
of phase with the output from the front.

By contrast, when including a circular baffle and then
increasing its size, the actual radiating area decreases in pro-
portion to the total so that it behaves more like a coherent
point source at the center. Hence, in the case of b=4a, a deep

FIG. 19. Normalized radiation admittance of a disk in free space according
to historical approximation.
null can be seen at ka=� /2 or 
=4a, which is the distance
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from the center to the edge. Of course, a disk at the center of
a circular baffle is the “worst case,” and it would be interest-
ing to compare these results with those of an offset disk in a
circular, rectangular, or elliptical baffle, for example, in order
to “smear” the path difference effect. It could be postulated
that, if the size of the baffle were increased still further, the
response would converge towards that of an infinite baffle,
where the latter is just a ruler flat line.

At larger values of ka, it can be seen that the near-field
pressure responses in finite and infinite baffles converge �see
Figs. 4 and 9, respectively�. It seems that, as the polar re-
sponse narrows, obstacles that are placed either side of the
sound source have less effect upon the sound field. Also,
distinct interference patterns start to emerge due to the pres-
ence of a rigid �i.e., opaque� sound source, or obstacle in the
case of a scattered incident wave.

The on-axis response of the disk in a closed baffle,
shown in Fig. 13, holds few surprises. As would be expected
from the averaged response of a disk in a finite baffle and an
infinite baffle, the same ripples as in Fig. 5 appear, but are
reduced in magnitude. It is fairly well known that a source in
a small enclosure produces 6 dB less sound output at low to
medium frequencies in free space than when placed against a
large plane surface. At high frequencies, of course, the size
of the baffle has little effect and the source behaves as
though the baffle is infinite. From the curves of Fig. 13, some
idea may be gained of how the frequency at which the
6-dB shift occurs is related to the size of the baffle. In the
impedance plot of Fig. 14, Crane’s results for b=a and b
=8a are included for comparison. In the case of b=a, the two
calculation methods differ by less than 10%. However, when
b is increased to 8a, the real impedance differs by up to 24%,
although the imaginary impedance matches within 5%.

Applying the unbaffled curve of Fig. 5 to the sound
transmitted through a circular aperture �according to Babi-
net’s principle�, it can be seen that the hole is a weak radiator
for small ka, as would be expected when considering that as
the radiation impedance approaches zero, it increasingly
matches that of the rest of the reflective screen. Even what
little power does pass through the hole tends to flow back
towards the screen. The power transmission coefficient is the
real unbaffled impedance of Fig. 3. As Bouwkamp6 and
Spence7 pointed out, a hole in a rigid screen is a much more
effective radiator of power at low frequencies, returning an
asymptotic transmission coefficient �or real radiation admit-
tance� of 8/�2. The latter is a pressure source like the un-
baffled resilient disk described in Sec. VI, where the pressure
is that of the undisturbed incident wave and could therefore
be considered as a resilient disk in an infinite baffle.

It can be seen from Fig. 17 that the approximation to the
radiation admittance of a rigid disk in free space is surpris-
ingly close to the actual solution and indeed converges to-
wards it at low frequencies, yielding rational asymptotic ex-
pressions for the admittance and impedance. The main
difference is that the ripples are missing from the real part at
higher frequencies. The real part, however, is the rigorous
transmission coefficient of the hypothetical resilient disk,
and shows that such a transducer would be a much more

effective radiator at low frequencies than a rigid disk, for
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which the transmission coefficient is the real impedance.
However, the directivity function given by Eq. �109� is per-
haps not such a useful approximation except at low frequen-
cies �ka�3�. At high frequencies, it does not converge to-
wards that of a disk in an infinite baffle, as does the actual
directivity function of an unbaffled rigid disk.

Finally, when the surface velocity is expressed as a
power series function of the radius, it is theoretically pos-
sible to accommodate any velocity distribution. This enables
Eq. �17� for the velocity distribution to be applied to fluid-
structure coupled problems, such as a circular membrane or
plate, providing a suitable Green’s function is used for the
structure. In order to verify the method described in Sec. II,
it has been found that Streng’s results14 can be reproduced,
but only if the m=0 term of Eq. �7� is included. The reason
originally stated for omitting this term10 was that there is
neither outward-radial nor axial particle displacement at the
perimeter and therefore the radial pressure gradient there is
expected to be zero. However, the radial particle displace-
ment at the perimeter is due to the sum of the front and rear
radial pressure gradients, which are equal and opposite and
therefore cancel. The method has also been verified using
FEM. It is hoped that the solutions provided in this paper
serve as an illustration of how the symbolic handling capa-
bility of modern mathematical software tools may be used to
simplify fundamental problems. For example, the conven-
tional equations describing the radiation impedance of a rigid
disk in free space or a finite open baffle were considered too
complicated to reproduce in most textbooks, whereas Eqs.
�47�–�51� and Eqs. �55�–�57� appear to be relatively com-
pact.
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