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ABSTRACT 
The idea of broadening the directivity pattern of a push-pull electrostatic loudspeaker by partitioning the stators 

into concentric annular rings, which are connected to tappings along a delay line, isn’t new. However, the delay 

line has traditionally been attenuated to avoid response irregularities due to the finite size of the membrane. An 

alternative approach is presented here whereby a constant-impedance delay line is configured to imitate an 

oscillating sphere, which is an ideal constant-directivity dipole source that needs no attenuation. Walker’s 

equation for the on-axis pressure does not account for the effect of the delay line without taking the vector sum 

of the currents though all the rings, so a simple alternative that does is presented here. 

1 Introduction 

Although there will probably always be a heated 

debate on exactly what directivity pattern is most 

desirable for sound reproduction through 

loudspeakers in an average listening room, one thing 

there does at least seem to be a consensus on is that 

the pattern should be as consistent as possible over 

the entire audio frequency range.[1],[2],[3] In the 

normal listening position, most of what we hear is 

reflected sound coming from the off-axis directions. 

Hence, if the reflected sound does not have the 

correct tonal balance, it cannot possibly sound 

natural. 

 

As well as having low coloration and low distortion, 

electrostatic loudspeakers enable us to control the 

directivity pattern produced by a single diaphragm in 

a way which is not possible with dynamic 

loudspeakers, by partitioning the stators into 

concentric annular rings which are connected to 

tappings along a delay line. However, the traditional 

approach has been to arrange the delay to reproduce 

the wavefront of a virtual point source located 

behind the membrane.[4] Due to the finite size of the 

membrane, Walker[5] correctly pointed out that the 

delay line needs to be attenuated to prevent 

irregularities in the frequency response of the 

radiated sound. Because the far-field pressure 

response is the Fourier transform of the sound 

source, the attenuation may be regarded as a 

windowing function. 

 

Now imagine a massless sphere oscillating back and 

forth with constant velocity at all frequencies, thus 

radiating sound into free space. Such a sound source 

would have a constant figure-of-eight directivity 

pattern and at higher frequencies, where the 

wavelength is smaller than the sphere, constant 

power would be radiated due to the mainly resistive 

radiation impedance. Unfortunately, such a sound 

source is impractical to construct. Even if it were 

possible to make a large perfectly-rigid 

hemispherical dynamic driver, it would need a lot of 

signal boosting at high frequencies to make it move 

with constant velocity, rather than constant 

acceleration, and thus radiate constant power. 

Instead, we shall describe how to imitate an 

oscillating sphere by using a planar circular 
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electrostatic loudspeaker with stators partitioned into 

concentric annular rings which are connected to a 

delay line.[6] These rings reproduce the sound that 

would emanate from an oscillating sphere placed 

immediately behind the membrane (and in contact at 

the center) as it arrives at the membrane. It turns out 

that using a geometric approximation that assumes a 

plane wave travelling axially from the face of the 

imaginary sphere gives far superior results to 

reproducing the true magnitude and phase of the 

waves produced by the sphere. We shall compare the 

effect of partitioning them into a finite number of 

rings with equal area, equal delay sections and equal 

widths, using a continuously varying radial delay as 

an ideal reference. 

 

For the sake of brevity in a convention paper, we 

shall ignore secondary effects, such as the 

membrane mass and stiffness, the stator 

perforations,[7] and stray capacitances, which are 

discussed elsewhere,[4] save to mention that 

membrane mass limits the high frequency response 

while the stiffness, which is determined by the 

tension, together with the radiation mass, sets the 

fundamental resonance frequency. At this frequency, 

the 1st-order low-frequency roll-off due to the rear-

wave cancellation (assuming there is no baffle) 

becomes a 3rd-order one. Note that the radiation 

mass is far greater than that of the membrane. The 

idea here is to describe the main principles of 

realizing a loudspeaker that imitates an oscillating 

sphere rather than providing a design cookbook. 

More details will be given later in the 2nd edition of a 

book.[8] 

2 Construction 

A typical electrostatic loudspeaker configuration is 

shown in Figure 1. In the middle is a light flexible 

membrane, which is held under tension and clamped 

at its rim between insulating ring spacers. The 

spacers separate the membrane from the rigid stators 

or ring electrodes located either side of it at a 

distance d. The membrane is circular with a radius a 

and has a conductive coating which is charged by a 

polarizing supply with a dc voltage EP. The 

polarizing supply is connected via a high-value 

resistor RP to prevent the charge on the membrane 

from varying significantly when the alternating 

signal voltage ine~  is applied to deflect the 

membrane either side of its central position. We take 

the input voltage to be that across the entire 

secondary of a push-pull step up transformer, which 

is still the most common way to develop the large 

signal voltage required to drive an electrostatic 

loudspeaker. As the membrane moves, it produces 

sound which passes through perforations in the 

stators. If the loudspeaker is required to produce low 

frequencies and therefore large membrane 

excursions, the conductive coating on the membrane 

is likely to have a high resistance to prevent the 

charge migrating to the central part which will be 

closest to the stator at maximum excursion. 

 

Polarizing supply EP 

Membrane 
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Delay line Delay line 

Spherical 

wave front 
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RP 

ein/2     ein/2 

 

Figure 1. Construction of push-pull electrostatic 

loudspeaker with delay lines. 
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Because the membrane is flexible, each part can 

move more-or-less independently from the rest 

according to the signal on the nearest ring. Due to 

the delay line, the sound emanates from the center 

first, followed by the first ring and then each 

successive ring in turn until it is radiated from the 

perimeter, by which time the sound from the center 

is already some distance away from the membrane. 

We just need to determine how to configure the 

delay to produce the optimum wavefront shape. 

3 Continuous delay 

Let us now consider the ideal situation whereby we 

increase the number of rings while reducing their 

widths until the delay becomes continuously 

variable along the radius of the membrane. Then we 

can isolate the effect of the delay profile from the 

discretization of the rings. If we treat the membrane 

as a pure pressure source with zero mass and 

stiffness, the far-field radiated sound pressure at a 

distance r and angle  from its center is given by 

inserting the far-field Green’s function of Eq. 

(13.70) from Ref. [8] together with Eq. (13.121) into 

the dipole boundary integral of Eq. (13.124) from 

the same reference 
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where J0 is the 0th-order Bessel function, k = /c is 

the wave number,  = 2f is the angular frequency, 

and )(~ wp  is the radial distribution of the 

electrostatic driving pressure. The tilde denotes a 

harmonically varying quantity where the term ejt 

has been suppressed. 

3.1 No delay 

If there is no delay, then the pressure everywhere on 

the surface of each side is half the driving pressure 
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and 0 is the permittivity of air. Hence, we just have 

a uniform pressure source or “resilient disk” in free 

space. The far-field pressure response then becomes 
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where the directivity function is given by 
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The directivity pattern 20log10D()  20log10D(0) 

is plotted in Figure 2. The on-axis response is simply 

,)0( kaD   (6) 

which is plotted in Figure 7 (black dashed). Note 

that D(0) here is defined as a dimensionless 

frequency response function with a constant driving 

pressure. The input current inEin eCjI ~~
 is almost 

entirely due to the static capacitance 

)2/(2

0 daCE   so that the on-axis pressure 

simply becomes Walker’s equation[5] 

 

Figure 2. Directivity patterns of 280 mm diameter 

membrane with no delay. Naturally, the high 

frequencies are extremely directive. 
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3.2 Virtual point source 

The geometry of a traditional “virtual point source” 

is shown in Figure 3. Due to its finite radius a, the 

membrane can only reproduce the part of the 

wavefront emanating from the source which forms a 

spherical cap with half-angle  and radius of 

curvature R, where 

.cotaR   (8) 

To reproduce this, the delay must account for the 

time taken for the wave to travel the distance R at 

each point w along the radius according to 

.22 RwRR   (9) 

Hence, the surface pressure distribution is given by 
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which leads to the directivity pattern 
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Figure 3. Geometry of virtual point source, which 

behaves like two back-to-back spherical caps with a 

discontinuity where they join, unlike a smooth 

oscillating sphere. 

 

Figure 4. Directivity patterns of virtual point source 

using a 280 mm diameter membrane, where the half-

angle  = 40 is close to that of the Quad ESL63.[4] 

where we have substituted s = w/a. The directivity 

pattern 20log10D()  20log10D(0) is plotted in 

Figure 4. The on-axis response is 
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which is plotted in Figure 7 (dark grey). 

3.3 Virtual oscillating sphere 

Naïvely, we might insert the pressure produced by 

an oscillating sphere, given by Eq. (4.129) of Ref. 

[8], into Eq. (1), while multiplying by jka/2 for 

constant velocity, to yield 
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where we have substituted 
2 2 2r w a   and 

cos /a r  . The first term in parentheses gives the 

true response of an oscillating sphere that would be 
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obtained if the membrane were infinitely large. 

However, the second term, which is a “diffraction” 

term due to the membrane’s finite size, interferes 

with the first term to produce an irregular response 

as shown in Figure 7 (light grey dashed). Hence, for 

our virtual oscillating sphere, we shall adopt the 

geometry shown in Figure 5, where the axial 

distance between each point on the front surface of 

the virtual sphere and the membrane is 

22 waa  . The amount of delay required at each 

point along the radius of the membrane is the time 

taken for sound to travel this distance. Hence, 

,
2

~
)(~ )(0
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p
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Figure 5. Geometry of virtual oscillating sphere. 

which leads to the directivity pattern 
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Figure 6. Directivity patterns of a virtual oscillating 

sphere using a 280 mm diameter membrane. The 

broad figure-of-eight pattern is almost constant at all 

frequencies. 

where we have substituted s = w/a. The directivity 

pattern 20log10D()  20log10D(0) is plotted in 

Figure 6. The on-axis response is 

),1(
2
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D jka   (16) 

which is plotted in Figure 7 (black) along with the 

following 1st-order high-pass filter approximation 

(light grey) 
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This approximation can be included as part of a 

crossover filter response, for example. The cut-off 

frequency is given by fC = c/(a). Above fC, we have 
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Then from Eqs. (4) and (18) the voltage sensitivity is 
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and at lower frequencies we have 
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The maximum field strength that we can realistically 

expect without breakdown is EP/d = 2000 V/mm. 

Similarly, the input voltage should not exceed 4000 

V peak across 2 mm. If the radius a is 14 cm and the 

permittivity of free space 0 is 8.85 pF/m, the 

maximum RMS sound pressure from Eq. (19) is 105 

dB SPL at 1 m re 20 Pa. This pressure increases by 

6 dB for every doubling of the diameter. The on-axis 

plot of a virtual oscillating sphere shown in Figure 7 

tells us that, in theory, a continuously increasing 

delay in the driving pressure along the radius of the 

membrane produces a very smooth response, with 

just some very small ripples, and an almost constant 

figure-of-eight directivity pattern at all frequencies, 

as shown in Figure 6. Although perfectly constant 

directivity is not achieved, the result is remarkably 

good considering the finite size of the membrane.  
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Figure 7. On axis responses 20log10D(0)/2 of a 280 

mm diameter membrane with a continuous and 

unattenuated delay line configured to simulate an 

oscillating sphere (black), a naïve oscillating sphere 

(light grey dashed) and a point source (dark grey) 

where the half-angle of the arc is 40. Also shown is 

a 1st-order filter response that approximates the 

oscillating sphere (light grey) and the on-axis 

response of the membrane with no delay (black 

dashed), which keeps rising as the energy is focused 

on-axis. 

4 Effect of discretization into rings of 
finite width 

4.1 Rings of equal delay 

One option might be to vary the widths of the rings 

so that there are equal delay sections between them, 

in which case the on-axis pressure is 
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where the radius of the nth ring is 
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a0 is the radius of the center disk and a1 = 0. In Eq. 

(21), the term in parentheses is proportional to the 

area of the nth ring while the exponent term 

represents the delay applied to that ring. The cross-

section of a stator with rings of equal delay is shown 

in Figure 8. 

 

Figure 8. Cross-section of stator divided into 

concentric rings of equal delay, where purely for 

illustration each ring has been shifted to the left by 

the distance that a wave would have travelled during 

the time delay applied to that ring. 



Mellow Electrostatic loudspeaker 

 

AES 144th Convention, Milan, Italy, 2018 May 23–26 

Page 7 of 11 

4.2 Rings of equal area 

Another option might be to vary the widths of the 

rings so that they all have the same area and 

capacitance, in which case the on-axis pressure is 
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where the radius of the nth ring is 
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The cross-section of a stator with rings of equal 

delay is shown in Figure 9. 

 

Figure 9. Cross-section of stator divided into 

concentric rings of equal area, where purely for 

illustration each ring has been shifted to the left by 

the distance that a wave would have travelled during 

the time delay applied to that ring. 

4.3 Rings of equal width 

The last option we shall consider is one in which the 

rings are of equal width, in which case the on-axis 

pressure is again given by Eq. (23) but with the 

radius of the nth ring given by 
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The cross-section of a stator with rings of equal 

delay is shown in Figure 10 while the on-axis 

responses with equal delay, equal area and equal 

width are plotted in Figure 11. 

 

Figure 10. Cross-section of stator divided into 

concentric rings of equal width, where purely for 

illustration each ring has been shifted to the left by 

the distance that a wave would have travelled during 

the time delay applied to that ring. 

-20

-15

-10

-5

0

5

10

15

20

25

30

100 1000 10000

N
o
rm

a
liz

e
d
 o

n
-a

x
is

 r
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

Equal width

Continuous

Equal delay

Equal area

 

Figure 11. Effects of discretization on a 280 mm 

diameter membrane where the stator is divided into 

6 rings and a center disk of various widths with the 

delay configured to simulate an oscillating sphere. 
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Arguably, the rings of equal delay produce the 

smoothest response at the higher frequencies due to 

their finer resolution of the rapid increase in delay 

near the rim, as shown in Figure 8. However, the 

outer rings are so thin that stray capacitances will 

dominate the ring capacitances, whereas a stator 

with rings of equal width largely avoids this 

problem. Also, the wide center disk will produce 

high-frequency beaming. Hence, the stator with 

rings of equal width, as shown in Figure 10, is the 

most useful in practice because a real delay line that 

rolls off the sound from the outermost rings first will 

smooth out the response in all directions, as we shall 

see. If the rings have equal width, they can be 

narrower than the wavelength over most the audio 

spectrum. 

5 A practical delay line 

We saw in the last section that the discretization of 

the delay into rings of finite width produces 

irregularities in the response at higher frequencies. 

However, the delay was an ideal delay like that 

produced by a DSP, whereas in practice, the delay is 

more likely to take the form of an analogue delay 

line on the high-voltage side of the transformer, such 

as that shown in Figure 12. Otherwise, a separate 

stepping up transformer would be needed to feed 

each ring. Unless complicated inductors with center 

taps or a very large number of inductors are used, 

analogue delay lines tend to introduce a degree of 

attenuation at the higher frequencies. In this case, 

this turns out to have a smoothing effect on the 

response. From Figure 5, we see that the total delay 

path-length zT at each point along the radial ordinate 

w is given by 
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For discretized rings, the delay section zn required 

for the nth ring is the difference between the total 

delay zTn at that ring and the sum of all the previous 

delay sections 
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Figure 12. Constant-impedance delay line. 
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Notice that we have taken the delay path to the mid-

point (an1 + an)/2 of each ring. The nth path-length zn 

is related to the time delay Tn of the nth section by 

,nn cTz   (29) 

where c is the speed of sound. In Figure 12, CRn are 

the ring capacitances which are given by 

d
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while Cn are shunt capacitors used to make up the 

required capacitance for the correct delay and 

impedance. The delay line comprises inductors Ln 

together with the total capacitances of each section 

2/nRnTn CCC   (32) 

where RT is the termination resistance on the far 

right-hand side. The termination resistance is also 

connected across each inductor to create a series of 

Zobel networks such that the impedance presented to 

the preceding section is always 2RT. The voltage 

transfer function of each delay section is given by 
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provided that the inductor values are set to 
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where s = j and 
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The time delay Tn per section is defined by 
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so that the total capacitance per section is given by 
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We can now furnish each section of the delay with 

its respective component values 

)(2 RnTnn CCC   (38) 

where CTn is given by Eq. (37) and CRn by Eq. (30). 

From Eq. (36) we have 
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We wish to minimize the capacitor values so that 

most of the signal current flows through the rings. If 

we set C1 = 0 so that CT1 = CR1, then 
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Each delay section is represented by the 

transmission matrix 
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However, the first section contains no inductor, only 

the capacitance of the center disk 

.
1

01

0

0 









RsC
A  (47) 



Mellow Electrostatic loudspeaker 

 

AES 144th Convention, Milan, Italy, 2018 May 23–26 

Page 10 of 11 

Hence, we can describe the whole delay line of 

Figure 12 by multiplying together the chain matrices 
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where ine~  and ini
~

 are the input voltage and current 

respectively and Ne~  is the voltage across the 

termination impedance 2RT. We evaluate Ne~  from 
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11aee inN   (49) 

The then voltage and current at the junction of each 

section may be calculated by working back from the 

termination 
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Hence the driving pressure produced by each ring is 
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6 Far-field sound pressure 

The far-field pressure is derived in the same way as 

that for a resilient disk in free space [11] and is the 

sum of the pressures radiated from each individual 

ring 
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where D() is the directivity function given by 
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which is plotted in Figure 13. The on-axis response 

is given by 
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which is plotted in Figure 14 using the quantities 

given in Table 1, where the total delay is 255 s and 

the width of each ring is 2 cm. 

 

 

Parameters Resistor & constants Inductors Capacitors Turnover frequencies 

a = 140 mm RT = 282 k L1 = 2.66 H C1 = 0 pF f1 = 16.9 kHz 

d = 1 mm 0 = 1.18 kg/m3 L2 = 4.90 H C2 = 5.75 pF f2 = 9.18 kHz 

r = 1 m c = 345 m/s L3 = 7.80 H C3 = 20.0 pF f3 = 5.77 kHz 

ein = 2 2  kVrms 0 = 8.85 pF/m L4 = 11.5 H C4 = 43.6 pF f4 = 3.92 kHz 

EP = 2 kV  L5 = 16.9 H C5 = 89.4 pF f5 = 2.66 kHz 

N = 6  L6 = 28.4 H C6 = 211 pF f6 = 1.59 kHz 

Table 1. Quantities used in calculation of directivity patterns shown in Figure 13 and on-axis response shown in 

Figure 14 for a of a 280 mm diameter membrane discretized into 6 equal rings and center disk using the delay 

line of Figure 12 with 6 sections. 
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Figure 13. Directivity patterns of a 280 mm diameter 

membrane discretized into 6 equal rings and center 

disk using the delay line of Figure 12 with 6 sections 
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Figure 14. On axis responses of a 280 mm diameter 

membrane with the delay configured to simulate an 

oscillating sphere where the delay is continuous 

(grey) and discretized into 6 equal rings and center 

disk (black) using the delay line of Figure 12. 

7 Conclusions 

We have shown that when the delay line of an 

electrostatic loudspeaker is configured so that it 

imitates an oscillating sphere, it is not the delay line 

but the discretization of the stator into rings of finite 

width that produces irregularities in the pressure 

response of Figure 11. However, a very smooth 

response may be obtained using an analogue delay 

line, as shown in Figure 14. Although this doesn’t 

produce a constant directivity pattern up to the very 

highest frequencies, broad directivity is maintained 

throughout the vital midrange and lower treble, as 

shown in Figure 13. Equation (19) is a useful 

formula for the voltage sensitivity when such a delay 

line is used, although Walker’s Equation (20) still 

applies for f < c/(a). 
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