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Relatively compact analytical expressions in the form of fast-converging expansions are derived for

the radiation resistance and reactance of a rectangular rigid piston in an infinite rigid baffle, which

are computationally efficient at high frequencies or large aspect ratios and yield simple approxima-

tions (asymptotic expressions) at low frequencies. Plots of the normalized radiation resistance and

reactance are shown for various aspect ratios with constant width as well as constant area.

Comparisons are also made with the impedance of an elliptic piston.
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I. INTRODUCTION

The radiation impedance of a rectangular rigid piston in

an infinite rigid baffle is one of the fundamental problems of

sound radiation, along with that of a circular piston. It is

applicable to rectangular loudspeaker diaphragms, horns,

and sound holes. Not surprisingly it has received attention

from a number of authors over the years using a variety of

different approaches. Stenzel1 and Bank and Wright2 use the

Rayleigh integral with the traditional Euclidean Green’s

function in a moveable-origin rectangular coordinate system.

Surprisingly, whereas Stenzel evaluates the integrals analyti-

cally, Bank and Wright calculate the quadruple integral

numerically without any attempt to simplify it. Chetaev3

reduces the quadruple integral to a single one which Burnett

and Soroka4 calculate numerically to produce tables accurate

to seven decimal places using a specially developed tech-

nique5 for highly oscillatory integrands.

Arase6 uses numerical integration to calculate the

mutual radiation impedance of two square pistons in an infi-

nite baffle, while Lee and Seo7 calculate the radiation imped-

ance of a single square piston. Levine8 reduces the

quadruple integral for the radiation efficiency of a rectangu-

lar panel with a non-uniform modal velocity distribution

down to a single one.

Morse and Ingard9 also use the Rayleigh integral but

with a Fourier Green’s function in rectangular coordinates,

which is the approach used in this paper. Confusingly, they

do not reduce the Green’s function from a triple infinite-

integral form to the simpler double one (as presented here)

until after inserting it into the Rayleigh integral. Then they

do not evaluate (solve) the integrals but simply state that the

sinc terms can be expanded and integrated term by term.

Although valid for the radiation resistance, this statement is

somewhat misleading in the case of the radiation reactance

because the infinite integral leads to diverging results when

evaluated this way. The infinite integral should be evaluated

analytically before expanding the integrand in order to eval-

uate the remaining finite integral, as demonstrated in this

paper. Not surprisingly, the form of the integral equation

obtained when using this approach is equivalent to that

derived using Bouwkamp’s theorem10 whereby the imped-

ance is obtained from the directivity pattern by integrating

the pressure over a hemisphere in the far field, as previously

demonstrated in the case of a rectangular piston.11 In fact the

universality of Bouwkamp’s theorem is demonstrated by

Mechel’s application of it to an elliptic radiator,12 as repro-

duced here for comparison.

An alternative approach is used by Stepanishen,13 based

on the elegant theory of Lindemann,14 in which the imped-

ance is expressed as a one-dimensional Fourier transforma-

tion of its time-domain impulse response. The difficulty of

this approach arises from the oscillatory integral in Eq. (22)

of Ref. 13 which is only evaluated analytically for the first

two terms of each of the expansions for the resistance and

reactance. Further analytical solutions could be obtained

through symbolic computation, but this is inconvenient.

Alternately, a general solution could be obtained but this

leads to complicated expressions for the resistance and reac-

tance with eight hypergeometric functions in each. However,

the low frequency approximations provided are particularly

useful.

Only Stenzel1 provides complete analytical evaluations

of all the integrals involved because, in the age of mechani-

cal computation, numerical integration of oscillatory inte-

grands was not an option. All of the subsequent authors,

most of whom appear to be unaware of his work, rely on

numerical integration and so Stenzel’s expressions have,

until now, been computationally the most efficient.

If Stenzel’s approach, using the Euclidean Green’s func-

tion, could be considered analogous to Rayleigh’s deriva-

tion15 for the radiation impedance of a circular piston in an

infinite baffle, then the approach in this paper, using the

Fourier Green’s function, could be considered analogous toa)Electronic mail: leo.m.karkkainen@nokia.com
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King’s derivation.16 In other words, the idea is to demon-

strate the utility of the elegant Fourier Green’s function,

which has found widespread use in the field of near-field

acoustic holography17 because it can be used to predict the

sound field from that captured within a plane back to the

source as well as forward from the plane, as demonstrated by

Stepanishen and Benjamin18 using a square vibrator with a

non-uniform velocity. This approach has also been applied

to a rectangular interface within a rigid baffle.19

The main purpose of this paper is to present expressions

for the radiation resistance and reactance that are more com-

pact and convenient to use without the need for numerical

integration which requires special techniques and is there-

fore more complicated to program. These expressions have

been found to agree numerically with those of Stenzel and

the data presented by Bank and Wright2 and Burnett and

Soroka.4 However, by using hypergeometric functions

instead of Stenzel’s logarithmic ones in the expression for

the reactance, numerical stability is improved at high fre-

quencies or large aspect ratios because this avoids taking the

differences between very large terms. Furthermore, this deri-

vation yields simple low-frequency asymptotic expressions

which agree with those of Stepanishen.13

II. DERIVATION OF THE NEAR-FIELD PRESSURE AND
RADIATION FORCE

A. Boundary conditions

The rectangular piston of area S¼ 4axay shown in Fig. 1

is mounted in an infinite rigid baffle in the xy plane with its

center at the origin and oscillates in the z direction with a

uniform surface velocity distribution ~u0, thus radiating from

both sides into a homogeneous loss-free medium, where the

tilde denotes a harmonically time-varying quantity or miss-

ing factor of eixt. Although the actual pressure field on one

side of the xy plane is anti-symmetrical to that on the other,

for our analysis it is convenient to remove the baffle alto-

gether and model the system using a monopole “breathing”

piston in free space. In other words, it is equivalent to two

back-to-back pistons (with a vanishingly small distance

between them) moving in opposite directions. Hence

~pðx; y; zÞ ¼ ~pðx; y;�zÞ: (1)

Consequently, there is a Neumann boundary condition in the

plane of the piston where these equal fields meet

@

@z
~p x; y; zð Þjz¼0 ¼ 0;

�1� x < �ax; ax < x �1
�1� y < �ay; ay < y �1;

(

(2)

which is satisfied automatically and thus replicates the baffle.

Also, on the surface of the piston, there is the coupling condition

@

@z
~p x; y; zð Þjz¼0 ¼ �ikqc~u0;

�ax � x � ax

�ay � y � ay;

�
(3)

where k is the wave number given by k¼x/c¼ 2p/k, x is

the angular frequency of excitation, q is the density of the

surrounding medium, c is the speed of sound in that medium,

and k is the wavelength.

B. Boundary integrals

The near-field pressure is given by the monopole Rayleigh

integral or monopole part of the Kirchhoff-Helmholtz boundary

integral taking into account the double-strength source11

~p x; y; zð Þ ¼ �2

ðay

�ay

ðax

�ax

@

@z
~p x; y; zð Þjz¼0

� g x; y; zjx0; y0; z0ð Þjz0¼0dx0dy0: (4)

The Euclidean Green’s function in three-dimensional rectan-

gular coordinates is given by

g x; y; zjx0; y0; z0ð Þ ¼ e�ikR

R
; (5)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
: (6)

However, we shall use the more powerful Fourier Green’s

function which is given by

g x; y; zjx0; y0; z0ð Þ

¼ � i

8p2

ð1
�1

ð1
�1

e�iðkx x�x0ð Þþky y�y0ð Þþkz z�z0ð ÞÞ

kz
dkxdky;

(7)

where

kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x � k2
y

q
; k2

x þ k2
y � k2

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y � k2

q
; k2

x þ k2
y > k2:

8<
: (8)

A formal derivation of Eq. (7) is given in Ref. 11 and it also

appears as Eq. (11) in Ref. 19. When using the Fourier

Green’s function, Eq. (4) represents a Fourier transform of

the surface velocity distribution into k-space and the Green’s

function of Eq. (7) represents the inverse transform as well

as the propagation of the spatial spectra in the z direction, as

detailed by Eqs. (7) and (8) of Ref. 18. In this paper, theFIG. 1. Geometry of the rectangular piston.
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Fourier Green’s function has the advantage over the

Euclidean one of losing the square root signs so that the vari-

ables become separable when evaluating the integrals.

C. Near-field pressure and radiation force

Inserting Eqs. (3) and (7) into Eq. (4) and integrating

over x0 and y0 gives

~p x; y; zð Þ ¼
kqc~u0

4p2

ð1
�1

ð1
�1

e�i kxxþkyyþkzzð Þ

kz

�
ðax

�ax

eikxx0 dx0

ðay

�ay

eikyy0 dy0dkxdky

¼ kqcaxay~u0

p2

ð1
�1

ð1
�1

e�i kxxþkyyþkzzð Þ

kz

� sinc kxaxð Þsinc kyayð Þdkxdky; (9)

where we have used sinc x¼ (sin x)/x. The total radiation

force is then given by

~F¼
ðax

�ax

ðay

�ay

~p x;y;zð Þjz¼0dxdy

¼
4kqca2

xa2
y ~u0

p2

ð1
�1

ð1
�1

sinc2 kxaxð Þsinc2 kyayð Þ
1

kz
dkxdky:

(10)

III. RADIATION IMPEDANCE

The specific radiation impedance is the ratio of the total

radiation force to the total volume velocity

Zs ¼
~F
~U0

¼
~F

4axay ~u0

¼ kqcaxay

p2

ð1
�1

ð1
�1

sinc2 kxaxð Þsinc2 kyayð Þ
1

kz
dkxdky:

(11)

By using polar coordinates, where kx¼ kt cos u, ky¼ ktsin u,

and dkxdky¼ k2tdtdu, we reduce the double infinite integral to

a single infinite one and a single finite one. Also, the infinite

integral can be split into the real resistance Rs and imaginary

reactance Xs so that

Zs ¼ Rs � iXs; (12)

where

Rs ¼
4kaxkayqc

p2

ðp=2

0

ð1

0

sinc2 kaxt cos uð Þ

� sinc2 kayt sin uð Þ
tdtduffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p ; (13)

Xs ¼
4kaxkayqc

p2

ðp=2

0

ð1
1

sinc2 kaxt cos uð Þ

� sinc2 kayt sin uð Þ
tdtduffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p : (14)

The solutions of these integrals are detailed in the Appendix

in order to yield the following expansions for the radiation

resistance and reactance:

Rs ¼
qcffiffiffi
p
p
XM

m¼0

XN

n¼0

�1ð Þmþn
q2nþ1 kaxð Þ2mþ2nþ2

2mþ 1ð Þ 2nþ 1ð Þ mþ 1ð Þ! nþ 1ð Þ!C mþ nþ 3

2

� � ; (15)

Xs ¼
qc

p
1�sinc 2kaxð Þ þ qð1� sincð2qkaxÞÞ

qkax
þ 2

XM

m¼0

�1ð Þm kaxð Þ2mþ1

2mþ 1ð Þm! mþ 1ð Þ! fm qð Þ

 !
; (16)

where

fm qð Þ ¼
2F1 1;mþ 1

2
;mþ 3

2
;

1

1þ q2

� �
þ 2F1 1;mþ 1

2
;mþ 3

2
;

1

1þ q�2

� �
2mþ 1ð Þ 1þ q�2ð Þmþ1=2

þ 1

2mþ 3

Xm

n¼0

gm;n qð Þ; (17)

gm;n qð Þ ¼
2mþ 3

2n

� �Xm

p¼n

�1ð Þp�n
q2n�1

2p� 1ð Þ 1þ q2ð Þp�1=2

m� n
p� n

� �
þ 2mþ 3

2nþ 3

� � Xm

p¼m�n

�1ð Þp�mþn
q2nþ2

2p� 1ð Þ 1þ q�2ð Þp�1=2

n
p� mþ n

� �
;

(18)
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q¼ ay/ax is the aspect ratio and 2F1 is the hypergeometric

function.20 Although Eqs. (16)–(18) for the reactance are in

the form of a triple expansion in m, n, and p, only the expan-

sion in m is frequency-dependent. The inner terms fm(q) can

be reused for each frequency step during the calculations. Of

course, more of them are needed at higher frequencies or

larger aspect ratios. In this paper, the expansion limits are set

to

M ¼ N ¼ 5þ ð1þ 2
ffiffiffi
2
p

qÞkax: (19)

This expression was found to produce a difference of less

than 10�8 in the numerical results when M and N were incre-

mented by 1. Hence, the authors have been able to reproduce

Table I of Ref. 4 which has 7 decimal places, exactly. The

radiation resistance and reactance are plotted for constant

width in Figs. 2 and 3, respectively, and for constant area in

Figs. 4 and 5, respectively. If the width is held constant and

the aspect ratio increased to infinity, we obtain an infinite

strip,21 the radiation resistance and reactance of which are

also shown in Figs. 2 and 3, respectively, using Eqs. (99)

and (100) of Ref. 21. In Figs. 4 and 5, where the area is con-

stant, we use radiation resistance and reactance of a circular

piston as a reference, as given by Eqs. (13.117) and (13.118)

of Ref. 11 in the form of the well-known Bessel and Struve

functions.

At low frequencies

Rs � qc
2q

p
k2a2

x ; kax < 0:5; kay < 0:5; (20)

Xs � qc
2

p

�
arcsinh qð Þþ qarccsch qð Þ

þ 1þ q3� 1þ q2
� �3=2

3q

�
kax; kax < 0:5; kay < 0:5

(21)

where20

arcsinhðqÞ ¼ lnðqþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
Þ;

arccschðqÞ ¼ lnðq�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q�2

p
Þ: (22)

All of these formulas are reciprocal with respect to q. In

other words, they are still valid if we replace q with 1/q, pro-

vided that we also replace ax with ay or qax. The low-

frequency approximations of Stepanishen13 are replicated if

we substitute

arcsinhðqÞ ¼ arccoshð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
Þ;

arccschðqÞ ¼ arccoshð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
=qÞ: (23)

IV. ELLIPTIC PISTON

Because the radiation impedance of a square piston is

very close to that of a circular one of the same area, it is inter-

esting to compare the radiation impedance of a rectangular

FIG. 2. Normalized specific radiation resistance Rs/(qc) for various aspect

ratios q¼ ay/ax with constant half-width ax.

FIG. 3. Normalized specific radiation reactance Xs/(qc) for various aspect

ratios q¼ ay/ax with constant half-width ax.

FIG. 4. Normalized specific radiation resistance Rs/(qc) for various aspect

ratios q with constant area S ¼ 4qa2
x , where a ¼

ffiffiffiffiffiffiffiffi
S=p

p
.
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piston with that of an elliptic one of the same area and aspect

ratio. The directivity pattern of an elliptic piston12 is given by

D h;/ð Þ ¼ 2
J1 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2/þ b2 sin2/

p
sin h

� 	
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2/þ b2 sin2/

p
sin h

: (24)

Bouwkamp’s impedance theorem10,11 leads to the following

integral expressions:

RS ¼
k2qcS

4p2

ð2p

0

ðp=2

0

jD h;/ð Þj2 sin hdhd/

¼ 2qk2a2
x

p

ðp=2

0

1

B2 /ð Þ 1� J1 2B /ð Þð Þ
B /ð Þ

� �
d/; (25)

XS ¼ �j
k2qcS

4p2

ð2p

0

ð p=2ð Þþj1

p=2ð Þþj0

jD h;/ð Þj2 sin hdhd/

¼ 2qk2a2
x

p

ðp=2

0

H1 2B /ð Þð Þ
B3 /ð Þ d/; (26)

where

Bð/Þ ¼ kax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2/þ q2 sin2/

q
and S ¼ paxay: (27)

The authors found the version of Eq. (25) given in Ref. 12 to

be in error as is also its solution. Hence correct solutions are

given here for convenience. Expanding the Bessel J1 and

Struve H1 functions, while substituting x¼ sin/, enables the

integrals to be evaluated as follows:22

RS ¼
2q

p

X1
m¼0

�1ð Þm kaxð Þ2mþ2

mþ 1ð Þ! mþ 2ð Þ!

ð1

0

1þ q2 � 1
� �

x2
� �mffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p dx

¼ qffiffiffi
p
p
X1
m¼0

�1ð Þm kaxð Þ2mþ2

mþ 1ð Þ! mþ 2ð Þ!

�
Xm

n¼0

m

n

 !
C nþ 1=2ð Þ

n!
q2 � 1
� �n

; (28)

XS ¼
2q

p

X1
m¼0

�1ð Þm kaxð Þ2mþ1

C

�
mþ 3

2

�
C

�
mþ 5

2

�

�
ð1

0

1þ q2 � 1
� �

x2
� �m�1=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p dx

¼ q
X1
m¼0

�1ð Þm kaxð Þ2mþ1

C

�
mþ 3

2

�
C

�
mþ 5

2

�

� 2F1

1

2
;
1

2
� m; 1; 1� q2

� �
; (29)

where the resistance integral has been evaluated with help

from the binomial theorem.20

At low frequencies

Rs � qc
q

2
k2a2

x ; kax < 0:5; kay < 0:5; (30)

Xs � qc
16q

3p2
K 1� q2
� �

kax; kax < 0:5; kay < 0:5;

(31)

where K is the complete elliptic integral of the first kind. A com-

parison of the impedance of a rectangular and elliptic piston of

the same area and aspect ratio q¼ 10 is shown in Fig. 6. From

Eqs. (20) and (30) we can deduce that the resistances should be

equal at very low frequencies. The reactances also appear to be

close. It is at higher frequencies where we start to see some dif-

ferences. Here the elliptical piston produces ripples which are

smoother and less deep than those of the rectangular piston.

V. CONCLUSION

A set of expansions have been derived for evaluating

the radiation resistance and reactance of a rectangular piston

in an infinite baffle using the Fourier Green’s function

in rectangular coordinates in the Kirchhoff-Helmholtz

FIG. 6. Comparison of elliptic and rectangular pistons—normalized specific

radiation resistance Rs/(qc) and reactance Xs/(qc) for aspect ratio q¼ 10

with constant area Sellip ¼ pqa2
x and Srect ¼ 4qa2

x , where a ¼
ffiffiffiffiffiffiffiffi
S=p

p
.

FIG. 5. Normalized specific radiation reactance Xs/(qc) for various aspect

ratios q with constant area S ¼ 4qa2
x , where a ¼

ffiffiffiffiffiffiffiffi
S=p

p
.
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boundary integral. They provide alternate expressions to

those previously derived, which almost all involve numerical

integration, and are hence a step closer to the simple expres-

sions for a circular piston. They are highly amenable to

numerical computation at high frequencies or large aspect

ratios and yield simple low-frequency asymptotic expres-

sions. However, it may be possible to simplify them even

further through the use of recursion formulas and so this

paper is intended to stimulate further research in the area.

The previous results of Bank and Wright,2 which were

obtained using a more computationally demanding integra-

tion, are reproduced in Figs. 4 and 5, albeit using 50 plot

points per decade rather than just 10. The authors have also

matched the tables of Ref. 4 exactly.

APPENDIX

A. Radiation resistance Rs

Substituting s¼ sinu in Eq. (13) yields

Rs ¼
4kaxkayqc

p2

ð1

0

ð1

0

sinc2 kaxt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p� �

� sinc2 kaytsð Þ
tdtdsffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p : (A1)

The sinc squared terms in may be expanded using20

sinc2x ¼
X1
n¼1

�1ð Þnþ1
22n�1

2nð Þ!
x2n�2; (A2)

which gives

Rs ¼
qc

p2

X1
m¼1

X1
n¼1

�1ð Þmþn
22mþ2n kaxð Þ2m�1 kayð Þ2n�1

2mð Þ! 2nð Þ!

�
ð1

0

1� s2ð Þm�3=2
s2n�2ds

�
ð1

0

1� t2ð Þ�1=2
t2mþ2n�3dt: (A3)

Applying the integral solutions20

ð1

0

1� s2ð Þm�3=2
s2n�2ds ¼

C m� 1

2

� �
C n� 1

2

� �
2C mþ n� 1ð Þ ;

(A4)ð1

0

1� t2ð Þ�1=2
t2mþ2n�3dt ¼

ffiffiffi
p
p

C mþ n� 1ð Þ

2C mþ n� 1

2

� � ; (A5)

while truncating the summation limits yields Eq. (15).

B. Radiation reactance Xs

The product of two sine squared terms in Eq. (14) can

be reduced to a sum of cosine terms by first applying the

identity sin2x¼ (1 � cos 2x)/2 to give

Xs ¼
4kaxkayqc

p2

ðp=2

0

ð1
1

1� cos 2kaxt cos uð Þ
2 kaxt cos uð Þ2

� 1� 2 cos 2kayt sin uð Þ
2 kayt sin uð Þ2

� tffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p dtdu ; (A6)

and then applying cos a cos b¼ (cos(aþ b)þ cos(a � b))/2

while multiplying out the numerator terms to yield

Xs ¼
qc

2p2kaxkay

ðp=2

0

ð1
1

1

cos2u sin2u

� 2� 2 cos 2kaxt cos uð Þ�2 cos 2kayt sin uð Þ
�
þ cos 2kaxt cos uþ 2kayt sin uð Þ

þ cos 2kaxt cos u� 2kayt sin uð ÞÞ
1

t3
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p dtdu;

(A7)

which is evaluated using the following identities:22ð1
1

1

t3
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p dt ¼ p

4
; (A8)

ð1
1

cos at

t3
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p dt ¼ p

4

�
1� a2 þ a3J0 að Þ � a2J1 að Þ

þaða2 � 1Þ p
2

J1 að ÞH0 að Þð

� J0 að ÞH1 að ÞÞ
�
: (A9)

Using the identity23ða

0

J0 xð Þdx ¼ a J0 að Þ þ p
2

J1 að ÞH0 að Þ � J0 að ÞH1 að Þð Þ
� �

;

(A10)

the cosine integral simplifies toð1
1

cos at

t3
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p dt ¼ p

4

�
aJ0 að Þ � a2J1 að Þ þ ða2 � 1Þ

�
ða

0

J0 xð Þdx� 1

� ��

¼ p
4

 
1� a2 þ

X1
m¼0

�1ð Þm

m!ð Þ2

� a2

mþ 1ð Þ 2mþ 1ð Þ þ
4m

2mþ 1

 !

� a

2

� �2mþ1
!
;

(A11)

where we have used the expansion20

J� zð Þ ¼
X1
m¼0

�1ð Þm

m! mþ �ð Þ!
z

2

� �2mþ�
: (A12)

Using the integral of Eq. (A11), while substituting s¼ sinu
in Eq. (A7), and gathering all the terms into a single expan-

sion yields
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Xs ¼
qc

pkaxkay

ð1

0

X1
m¼0

�1ð Þm

2mþ 3ð Þ 2mþ 1ð Þm! mþ 1ð Þ!
��

kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

þ kays
	2mþ3

þ jkax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

� kaysj2mþ3

�2 kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p� �2mþ3

� 2 kaysð Þ2mþ3
	 1

s2 1� s2ð Þ3=2
ds; (A13)

which is split over two intervals of integration in order to remove the magnitude sign

Xs ¼
qc

pkaxkay
X1 þ X2ð Þ; (A14)

where

X1 ¼
ðax=

ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p

0

X1
m¼0

�1ð Þm

2mþ 3ð Þ 2mþ 1ð Þm! mþ 1ð Þ!
��

kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

þ kays
	2mþ3

þ kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

� kays
� 	2mþ3

� 2 kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p� �2mþ3

� 2 kaysð Þ2mþ3
	 1

s2 1� s2ð Þ3=2
ds; (A15)

X2 ¼
ð1

ax=
ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p
X1
m¼0

�1ð Þm

2mþ 3ð Þ 2mþ 1ð Þm! mþ 1ð Þ!
��

kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

þ kaysÞ2mþ3þ kays� kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p� 	2mþ3

� 2 kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p� �2mþ3

� 2 kaysð Þ2mþ3
	 1

s2 1� s2ð Þ3=2
ds: (A16)

Rearranging gives

X1 ¼
ðax=

ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p

0

X1
m¼0

�1ð Þm

2mþ 3ð Þ 2mþ 1ð Þm! mþ 1ð Þ!

��
kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

Þ2mþ3

� 1þ ays

ax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

� �2mþ3

þ 1� ays

ax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

� �2mþ3

� 2

( )
� 2 kaysð Þ2mþ3

�
1

s2 1� s2ð Þ3=2
ds; (A17)

X2 ¼
ð1

ax=
ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p
X1
m¼0

�1ð Þm

2mþ 3ð Þ 2mþ 1ð Þm! mþ 1ð Þ!

�
kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p� �2mþ3

� 1þ ays

ax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

� �2mþ3

� 1� ays

ax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

� �2mþ3

� 2

( )
� 2 kaysð Þ2mþ3

�
1

s2 1� s2ð Þ3=2
ds ; (A18)

which can then be expanded using the binomial theorem20

16
ays

ax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

� �2mþ3

¼
X2mþ3

n¼0

61ð Þn 2mþ 3

n

� �
ays

ax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

� �n

; (A19)

to yield

X1 ¼
ðax=

ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p

0

X1
m¼0

2 �1ð Þm

2mþ 3ð Þ 2mþ 1ð Þm! mþ 1ð Þ!

�
kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p� �2mþ3Xmþ1

n¼1

2mþ 3

2n

 !
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ax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

� �2n

� kaysð Þ2mþ3

�
1

s2 1� s2ð Þ3=2
ds; (A20)

X2 ¼
ð1

ax=
ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p
X1
m¼0

2 �1ð Þm

2mþ 3ð Þ 2mþ 1ð Þm! mþ 1ð Þ! kax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p� �2mþ3 Xm

n¼0

2mþ 3

2nþ 1

 !
ays

ax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

� �2nþ1

� 1

 !

� 1

s2 1� s2ð Þ3=2
ds; (A21)

where the pairs of expansions have been combined into even and odd expansions. Splitting the integrands into four separate

integrals gives
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X1 ¼ 2
X1
m¼0

�1ð Þm

2mþ 3ð Þ 2mþ 1ð Þm! mþ 1ð Þ!

(
kaxð Þ2mþ3

Xmþ1

n¼1

2mþ 3

2n

 !
a2n

y

a2n
x

ðax=
ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p

0

1� s2ð Þm�n
s2n�2ds

� kayð Þ2mþ3

ðax=
ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p

0

1� s2ð Þ�3=2
s2mþ1ds

)
; (A22)

X2 ¼
X1
m¼0

2 �1ð Þm

2mþ 3ð Þ 2mþ 1ð Þm! mþ 1ð Þ!

(
kaxð Þ2mþ3

Xm

n¼0

2mþ 3

2nþ 1

 !
a2nþ1

y

a2nþ1
x

ð1

ax=
ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p 1� s2ð Þm�n�1=2
s2n�1ds

� kaxð Þ2mþ3

ð1

ax=
ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p 1� s2ð Þms�2ds



; (A23)

which has to be split up into six integrals as follows before evaluating because the (mþ 1)th term of the first expansion in n
and the zeroth term of the second have different solutions from the rest

Xs ¼
2qc

pkaxkay

X1
m¼0

�1ð Þm

2mþ 3ð Þ 2mþ 1ð Þm! mþ 1ð Þ!

(
kaxð Þ2mþ3

2mþ 3ð Þ
a2mþ2

y

a2mþ2
x

I1 mð Þ

þ kaxð Þ2mþ3
Xm

n¼1

2mþ 3

2n

 !
a2n

y

a2n
x

I2 m; nð Þ � kayð Þ2mþ3I3 mð Þ þ kaxð Þ2mþ3
2mþ 3ð Þ ay

ax
I4 mð Þ

þ kaxð Þ2mþ3
Xm

n¼1

2mþ 3

2nþ 1

 !
a2nþ1

y

a2nþ1
x

I5 m; nð Þ � kaxð Þ2mþ3I6 mð Þ
)
; (A24)

where the following integrals are evaluated with help from Eq. (A19) and the substitution of t¼ (1 � s2)k � 1/2 for I3, I4, and

I5, where k¼�1, m, m � n, respectively,

I1 mð Þ ¼
ðax=

ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p

0

1� s2ð Þ�1
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ax
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

x
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@

1
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p¼1

1

2p� 1
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y

q !2p�1

¼ 1

2mþ 1ð Þ 1þ
a2

y

a2
x

 !mþ1=2 2F1 1;mþ 1

2
; mþ 3

2
; 1þ

a2
y

a2
x

 !�1
0
@

1
A; (A25)

I2 m; nð Þ ¼
ðax=

ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p

0

1� s2ð Þm�n
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y
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; (A26)

I3 mð Þ ¼
ðax=

ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p

0

1� s2ð Þ�3=2
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2p� 1

m
p

� �
1� ayffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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y

q !2p�1
0
@

1
A ; (A27)

I4 mð Þ ¼
ð1

ax=
ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p 1� s2ð Þm�1=2
s�1ds¼
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ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p

0

1� t2ð Þ�1
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þ
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y
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x
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@

1
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2p� 1
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y
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 !mþ1=2 2F1 1;mþ 1

2
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2
; 1þ a2

x

a2
y

 !�1
0
@

1
A; (A28)

I5 m; nð Þ ¼
ð1

ax=
ffiffiffiffiffiffiffiffiffi
a2

xþa2
y

p 1� s2ð Þm�n�1=2
s2n�1ds ¼

Xn�1
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2 pþ m� nð Þ þ 1

n� 1

p

� �
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y
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; (A29)
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I6 mð Þ ¼
ð1

ax=
ffiffiffiffiffiffiffiffiffi
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xþa2
y
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y
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to yield
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m
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 !1A
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>;; (A31)

where q¼ ay/ax is the aspect ratio and we have used the second (Hypergeometric) solutions of the integrals in Eqs. (A25) and

(A28). The reason for this is that at high frequencies, where the first (logarithmic) solution needs to have many terms in the

expansion, errors arise when subtracting the two parts of the solution which have almost the same value. However, the first

solutions will be used to obtain the low-frequency asymptotic approximation of Eq. (21). Alternatively, using20

Xm

k¼0

�1ð Þk

2k � 1

m
k

� �
¼ � 2mþ 3ð Þ 2mþ 1ð Þ

ð1

0

1� s2ð Þ1=2
s2mþ1ds ¼ �

ffiffiffi
p
p

m!

C mþ 1

2

� � ; (A32)

together with Eq. (A2), and re-ordering the expansions,

while truncating their limits, leads to the simplified expres-

sion of Eq. (16).
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